
Journal of Machine Learning Research 15 (2014) 1-21 Submitted 6/13; Published 8/14

Accelerating t-SNE using Tree-Based Algorithms

Laurens van der Maaten lvdmaaten@gmail.com

Pattern Recognition and Bioinformatics Group

Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands

Editor: Aaron Courville

Abstract

The paper investigates the acceleration of t-SNE—an embedding technique that is com-
monly used for the visualization of high-dimensional data in scatter plots—using two tree-
based algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm
and of the dual-tree algorithm that approximate the gradient used for learning t-SNE em-
beddings in O(N logN). Our experiments show that the resulting algorithms substantially
accelerate t-SNE, and that they make it possible to learn embeddings of data sets with
millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears
to outperform the dual-tree variant.

Keywords: Embedding, multidimensional scaling, t-SNE, space-partitioning trees,
Barnes-Hut algorithm, dual-tree algorithm.

1. Introduction

Visual exploration is an essential component of data analysis, as it allows for the devel-
opment of intuitions and hypotheses for the processes that generated the data. Visual
analytics provides and develops approaches to obtain such understanding from complex
data: it aims to develop methods that allow analysts to examine the processes underly-
ing the data (Keim et al., 2010). Unfortunately, modern visual-analytics approaches are
still largely based on traditional visualization techniques such as histograms, scatter plots,
and parallel coordinate plots; see, e.g., Heer et al. (2010) for an overview of visualization
techniques. The drawback of these visualization techniques is that they only facilitate the
visualization of one or a few data variables at a time, which prohibits their use on large,
high-dimensional data sets. In order to develop hypotheses about processes that generate a
large number of variables, it is therefore necessary to perform an automatic analysis of the
data before making visualizations. A popular way to perform such an automatic analysis
is by learning a low-dimensional embedding of the data. In a low-dimensional embedding,
each (high-dimensional) object is represented by a low-dimensional point in such a way, that
nearby points correspond to similar objects and that distant points correspond to dissimilar
objects. The low-dimensional embedding can readily be visualized in, e.g., a scatter plot or
a parallel coordinate plot, or it can be used as the basis for the construction of more ad-
vanced visualizations, such as class-conditional density maps (van Eck and Waltman, 2010)
or hierarchical visualizations (Tiño and Nabney, 2002).

c©2014 Laurens van der Maaten.

van der Maaten

A plethora of embedding techniques have been proposed over the last decade, e.g.,
by Carreira-Perpiñán (2010); Lawrence (2011); Roweis and Saul (2000); Tenenbaum et al.
(2000); Saul et al. (2006); and van der Maaten and Hinton (2008). Reviews of these meth-
ods are given by, e.g., van der Maaten et al. (2009) and Burges (2010). Because in high-
dimensional spaces, only small pairwise distances are reliable, most of these techniques only
try to accurately model such small pairwise distances in the low-dimensional embedding.
In particular, a family of techniques that preserves small pairwise distances via stochas-
tic neighbor embedding (SNE; Hinton and Roweis (2003)) has recently gained popularity
(Carreira-Perpiñán, 2010; van der Maaten and Hinton, 2008; Venna et al., 2010). Stochastic
neighbor embedding techniques compute an N×N similarity matrix in both the original
data space and in the low-dimensional embedding space in such a way, that the similarities
form a probability distribution over pairs of objects. The distribution over pairs of objects
is defined such that pairs of similar objects have a high probability under the distribution,
whilst pairs of dissimilar points have a low probability. Specifically, the probabilities are
generally given by a normalized Gaussian or Student-t kernel computed from the input
data or from the embedding. The low-dimensional embedding is learned by minimizing the
Kullback-Leibler divergence between the two probability distributions (computed in the
original data space and the embedding space) with respect to the locations of the points
in the embedding. Because of the asymmetry of the Kulback-Leibler divergence, stochas-
tic neighbor embedding focuses on accurately modeling small pairwise distances, i.e., on
preserving local data structure in the low-dimensional embedding.

Because the objective functions of most1 stochastic neighbor embedding techniques are
non-convex, the minimization of the objective is typically performed using first-order or
second-order gradient-descent techniques (Carreira-Perpiñán, 2010; Hinton and Roweis,
2003; Vladymyrov and Carreira-Perpiñán, 2012). The gradient of the Kullback-Leibler
divergence that is minimized has a very natural interpretation as an N -body system in
which all of the N points in the low-dimensional embedding exert forces on each other, and
the resultant force on each of the points needs to be computed.

Because the computation of stochastic neighbor embedding gradients involves the eval-
uation of forces between all N ×N pairs of points, one of the main limitations of stochastic
neighbor embedding is that its computational complexity scales quadratically in the num-
ber of input objects N . In practice, this limits the applicability of stochastic neighbor
embedding to data sets with only a few thousand points. To visualize larger data sets,
landmark implementations of stochastic neighbor embedding may be used (van der Maaten
and Hinton, 2008), but this is hardly a satisfactory solution because it does not facilitate
visualization of all available data. Alternatively, computational problems may be circum-
vented by learning a parametric function between the input space and the embedding using
a type of stochastic gradient descent (van der Maaten, 2009), but such an approach sub-
stantially complicates learning and is only applicable when the input data takes the form
of high-dimensional data vectors.

In this paper, we explore tree-based approaches for stochastic neighbor embedding that
require only O(N logN) computation and O(N) memory. Our approaches compute a sparse

1. We note that it is possible to define a convex variant of traditional stochastic neighbor embedding
(Hinton and Roweis, 2003) by performing the minimization with respect to the Gram matrix of the
low-dimensional embedding instead of with respect to the low-dimensional embedding itself.

2

Accelerating t-SNE using Tree-Based Algorithms

approximation of the similarities between the input objects using vantage-point trees (Yian-
ilos, 1993), and subsequently, they approximate the forces between the points in the embed-
ding with the help of either a Barnes-Hut algorithm (Barnes and Hut, 1986) or a dual-tree al-
gorithm (Gray and Moore, 2001, 2003). The Barnes-Hut and dual-tree algorithms reduce the
number of pairwise forces that needs to be computed by exploiting the fact that the forces
exerted between two small groups of points are all very similar whenever these two groups are
relatively far away. We will study the performance of the tree-based algorithms in the con-
text of the successful t-distributed stochastic neighbor embedding (t-SNE; van der Maaten
and Hinton (2008)) algorithm, but similar computational approaches may be used to speed
up, e.g., standard stochastic neighbor embedding (Hinton and Roweis, 2003), the neigh-
borhood retrieval visualizer (NeRV; Venna et al. (2010)), and elastic embedding (Carreira-
Perpiñán, 2010; Vladymyrov and Carreira-Perpiñán, 2014). Source code of our tree-based
t-SNE algorithms is publicly available on http://homepage.tudelft.nl/19j49/tsne; this
software has recently been successfully used to create large-scale embeddings of, among
others, mouse brain data (Ji, 2013), metagenomic data (Laczny et al., 2014), and word
embeddings (Cho et al., 2014). This paper is an extended version of an earlier conference
publication (van der Maaten, 2013) on a Barnes-Hut approximation to t-SNE, which was
recently independently investigated by Yang et al. (2013). Compared to these prior papers,
this paper: (1) investigates a second tree-based algorithm to speed up t-SNE, viz. the
dual-tree algorithm, whereas van der Maaten (2013) and Yang et al. (2013) only considered
the Barnes-Hut algorithm; (2) contains more detailed explanations of the techniques and
experiments; and (3) contains additional experimental results on a number of large data
sets.

The outline of the remainder of this paper is as follows. In Section 2, we discuss related
work on accelerating algorithms that scale quadratically in the data set size. Section 3
reviews the t-SNE algorithm of van der Maaten and Hinton (2008). In Section 4, we
present accelerated variants of t-SNE that are based on the Barnes-Hut and on the dual-
tree algorithm. Our experimental results are presented in Section 5. Section 6 concludes
the paper and presents directions for future work.

2. Related work

This work fits in a larger body of prior work that has focused on decreasing the com-
putational complexity of algorithms that scale quadratically in the amount of data when
implemented naively, such as nearest neighbor search and Parzen density estimation.

In nearest-neighbor search problems, substantial speed-ups are generally obtained using
space-partitioning (metric) trees such as kd-trees (Freidman et al., 1977; Silpa-Anan and
Hartley, 2008), b-trees (Bayer and McCreight, 1972), cover trees (Beygelzimer et al., 2006),
vantage-point trees (Yianilos, 1993), and trees constructed using hierarchical clustering
(Fukunaga and Narendra, 1975; Brin, 1995; Nister and Stewenius, 2006). An approach that
automatically selects the best-performing tree-based algorithm for a particular data set was
presented by Muja and Lowe (2009). Alternative approaches to speed up nearest-neighbor
search use approximate search algorithms based on locality sensitive hashing (Indyk and
Motwani, 1998; Weiss et al., 2008; Salakhutdinov and Hinton, 2007). Motivated by their

3

http://homepage.tudelft.nl/19j49/tsne

van der Maaten

strong performance reported in earlier work by Liu et al. (2004), we opt to use metric trees
to approximate the similarities of the input objects in our algorithms.

Prior work on accelerating N -body computations, e.g., to perform fast Parzen density
estimation, is generally based on O(N logN) tree-based algorithms such as the Barnes-Hut
algorithm (Barnes and Hut, 1986) and the dual-tree algorithm (Gray and Moore, 2001,
2003), or on O(N) fast multipole methods (Rokhlin, 1985). We explain the Barnes-Hut
and dual-tree algorithms in more detail in Section 4. Fast multipole methods perform ex-
pansions of the forces that points exert on each other that are specific to the functional form
of those forces, and use these expansions to speed up the computations (Rokhlin, 1985).
For instance, if the strength of the interactions is governed by a Gaussian function, the
interactions may be approximated by a weighted sum of Hermite polynomials: the interac-
tion I(·, ·) between objects x and y then factorizes as I(x,y) = f(x)g(y), which facilitates
the computation of all resultant forces in O(N). For Gaussian forces, the fast multipole
approach is generally referred to as the fast Gauss transform (Greengard and Rokhlin,
1987; Yang et al., 2003). The aforementioned algorithms for fast N -body computations
are commonly used in astronomy, e.g., for simulating large galaxies (Springel et al., 2001;
Croton et al., 2006), and in information visualization, e.g., for constructing force-directed
layouts and for graph drawing (Fruchterman and Reingold, 1991; Chalmers, 1996; Quigley
and Eades, 2000; Hu, 2005). Lang et al. (2005) presents an experimental comparison of
many of the algorithms.

In machine learning, dual-tree algorithms have been used for, among others, density
estimation (Gray and Moore, 2001, 2003) and Gaussian process regression (Gray, 2004).
Raykar and Duraiswami (2006) have used fast multipole methods to speed up Parzen density
estimators. de Freitas et al. (2006) also used fast multipole approaches to speed up the
computation of GaussianN -body interactions, in particular, in order to speed up generalized
eigenvalue solvers based on Krylov subspace iteration as well as to speed up active learning
(Mahdaviani et al., 2005) and stochastic neighbor embedding. Recently, Vladymyrov and
Carreira-Perpiñán (2014) have also explored a fast multipole approach for constructing
embeddings, focusing on the elastic-embedding algorithm. Unfortunately, the fast multipole
approach cannot be readily applied to t-SNE because, to the best of our knowledge, there
exists no appropriate expansion for forces governed by Student-t interactions: using fast
multipole methods for t-SNE would thus require further approximations that, for instance,
replace the Student-t interactions in the learning gradient by Gaussian interactions.

3. t-Distributed Stochastic Neighbor Embedding

t-Distributed stochastic neighbor embedding (t-SNE) minimizes the divergence between
two distributions: a distribution that measures pairwise similarities of the input objects
and a distribution that measures pairwise similarities of the corresponding low-dimensional
points in the embedding. Assume we are given a data set of (high-dimensional) input
objects D = {x1,x2, . . . ,xN} and a function d(xi,xj) that computes a distance between a
pair of objects, e.g., the Euclidean distance d(xi,xj) = ‖xi−xj‖. Our aim is to learn an s-
dimensional embedding in which each object is represented by a point, E = {y1,y2, . . . ,yN}
with yi ∈ Rs (typical values for s are 2 or 3). To this end, t-SNE defines joint probabilities
pij that measure the pairwise similarity between objects xi and xj by symmetrizing two

4

Accelerating t-SNE using Tree-Based Algorithms

conditional probabilities as follows:

pj|i =
exp(−d(xi,xj)

2/2σ2i)∑
k 6=i exp(−d(xi,xk)2/2σ

2
i)
, pi|i = 0 (1)

pij =
pj|i + pi|j

2N
. (2)

In the above equation, the bandwidth of the Gaussian kernels, σi, is set in such a way
that the perplexity of the conditional distribution Pi equals a predefined perplexity u. As
a result, the optimal value of σi varies per object: in regions of the data space with a
higher data density, σi tends to be smaller than in regions of the data space with lower
density. The optimal value of σi for each input object can be found using a simple binary
search (Hinton and Roweis, 2003) or using a robust root-finding method (Vladymyrov and
Carreira-Perpiñán, 2013).

In the s-dimensional embedding E , the similarities between two points yi and yj (i.e., the
low-dimensional models of xi and xj) are measured using a normalized heavy-tailed kernel.
Specifically, the embedding similarity qij between the two points yi and yj is computed as
a normalized Student-t kernel with a single degree of freedom:

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

, qii = 0. (3)

The heavy tails of the normalized Student-t kernel allow dissimilar input objects xi and
xj to be modeled by low-dimensional counterparts yi and yj that are too far apart. This
is desirable because it creates more space to accurately model the small pairwise distances
(i.e., the local data structure) in the low-dimensional embedding.

The locations of the embedding points yi are determined by minimizing the Kullback-
Leibler divergence between the joint distributions P and Q:

C(E) = KL(P ||Q) =
∑
i 6=j

pij log
pij
qij
. (4)

Due to the asymmetry of the Kullback-Leibler divergence, the objective function focuses
on modeling high values of pij (similar objects) by high values of qij (nearby points in the
embedding space). The objective function is non-convex in the embedding E . It is typically
minimized by descending along the gradient:

∂C

∂yi
= 4

∑
j 6=i

(pij − qij)qijZ(yi − yj), (5)

where we defined the normalization term Z =
∑

k 6=l(1 + ‖yk − yl‖2)−1.
It is straightforward to see that the evaluation of the joint distributions P and Q is

O(N2), because both distributions involve a normalization term that sum over all N(N−1)
pairs of unique objects. Since t-SNE scales quadratically in the number of objects N , its
applicability is limited to data sets with only a few thousand input objects; beyond that,
learning becomes too slow to be practical (and the memory requirements become too large).

5

van der Maaten

4. Tree-Based Algorithms for t-SNE

We explore two fast algorithms to approximate the t-SNE gradient ∂C
∂yi

: (1) an algorithm
based on the Barnes-Hut approximation and (2) an algorithm based on the dual-tree approx-
imation. Both variants use the same algorithm to approximate the similarities computed
between the input data, viz. they use a metric tree to approximate P by a sparse distribu-
tion in which only O(uN) values are non-zero. This approximation of the input similarities
is described in detail in Section 4.1. The Barnes-Hut and dual-tree approximations are
presented in Section 4.2 and 4.3, respectively.

4.1 Approximating Input Similarities

The input similarities in t-SNE are defined as normalized Gaussian kernel values. As a
result, probabilities pij that correspond to dissimilar input objects i and j are nearly in-
finitesimal. Therefore, we can develop a sparse approximation for the probabilities pij
without negatively affecting the quality of the final embeddings. In particular, we compute
the sparse approximation by finding the b3uc nearest neighbors of each of the N input
objects (recall that u is the perplexity of the conditional distributions), and we redefine the
pairwise similarities between the input objects, pij , as:

pj|i =

{
exp(−d(xi,xj)

2/2σ2
i)∑

k∈Ni
exp(−d(xi,xk)2/2σ

2
i)
, if j ∈ Ni

0, otherwise
(6)

pij =
pj|i + pi|j

2N
. (7)

Herein, Ni represents the set of the b3uc nearest neighbors of xi, and the bandwidth σi is
set such that the perplexity of the conditional distribution equals a predefined perplexity u
via a binary search over σi. The nearest neighbor sets Ni are found in O(uN logN) time by
building a vantage-point tree on the input data and performing an exact nearest-neighbor
search with the help of the resulting tree.

In a vantage-point tree, each node stores an input object and the radius of a (hyper)ball
that is centered on this object (Yianilos, 1993). All non-leaf nodes in the tree have two
children: objects that are located inside the ball are stored under the left child of the node,
whereas objects that are located outside the ball are stored under the right child. The tree is
constructed by presenting the objects one-by-one, traversing the tree based on whether the
current object lies inside or outside a ball, and creating a new leaf node in which the object
is stored. The radius of the new leaf node is set to the median distance between its object
and all other objects that lie inside the ball represented by its parent node. To construct a
vantage-point tree, the objects need not necessarily be points in a high-dimensional feature
space; the availability of a metric d(xi,xj) suffices. Therefore, the use of vantage-point trees
facilitates the application of our algorithms even on complex data types, provided a metric
d(xi,xj) is available. In all our experiments, the input data comprises high-dimensional
vectors, xi ∈ RD, and we use the metric d(xi,xj) = ‖xi − xj‖.

A nearest-neighbor search to construct the set Ni is performed using a depth-first search
on the vantage-point tree that computes the distance of the objects stored in the nodes to
the target object, whilst maintaining: (1) a list of the current nearest neighbors and (2)

6

Accelerating t-SNE using Tree-Based Algorithms

the distance τ to the furthest nearest neighbor in the current neighbor list. The value of
τ determines whether or not a node should be explored: if there can still be objects inside
the ball whose distance to the target object is smaller than τ , the left node is searched, and
if there can still be objects outside the ball whose distance to the target object is smaller
than τ , the right node is searched. The order in which children are explored depends on
whether or not the target object lies inside or outside the current node ball: the left child
is examined first if the object lies inside the ball, because the odds are that the nearest
neighbors of the target object are also located inside the ball. Conversely, the right child is
examined first whenever the target object lies outside of the ball.

The nearest-neighbor search is performed for all N input objects in D in order to ob-
tain the nearest-neighbor sets Ni. Afterwards, it is straightforward to compute the input
similarities via Eqn. 6 and 7.

4.2 Barnes-Hut Approximation

To approximate the t-SNE gradient, we start by splitting the gradient into two parts as
follows:

∂C

∂yi
= 4(Fattr + Frep) = 4

∑
j 6=i

pijqijZ(yi − yj)−
∑
j 6=i

q2ijZ(yi − yj)

 , (8)

where Fattr denotes the sum of all attractive forces (the left sum), whereas Frep denotes the
sum of all repulsive forces (the right sum). Computing the sum of all attractive forces, Fattr,
is computationally efficient; it can be done2 by summing over all non-zero elements of the
sparse distribution P that was constructed using the procedure described in the previous
subsection in O(uN). However, a naive computation of the sum of all repulsive forces, Frep,
is still O(N2). We now develop a Barnes-Hut algorithm to approximate Frep efficiently in
O(N logN).

Consider three points yi, yj , and yk with ‖yi − yj‖≈ ‖yi − yk‖�‖yj − yk‖. In this
situation, the contributions of yj and yk to Frep will be roughly equal. The Barnes-Hut
algorithm (Barnes and Hut, 1986) exploits this by (1) constructing a quadtree or octtree3

on the current embedding, (2) traversing the quadtree using a depth-first search, and (3)
at every node in the quadtree, deciding whether the corresponding cell can be used as a
“summary” for the contributions to Frep of all points in that cell.

A quadtree is a tree in which each node represents a rectangular cell with a particular
center, width, and height. Non-leaf nodes have four children that split up the cell into four
smaller cells (quadrants) that lie “northwest”, “northeast”, “southwest”, and “southeast”
of the center of the parent node; see Figure 2 for an illustration of a quadtree. Leaf nodes
represent cells that contain at most one point of the embedding; the root node represents
the cell that contains the complete embedding. In each node, we store the center-of-mass
of the embedding points that are located inside the corresponding cell, ycell, and the total
number of points that lie inside the cell, Ncell. A quadtree has O(N) nodes and can be

2. Note that the term qijZ = (1 + ‖yi − yj‖2)−1 can be computed in O(1).
3. Throughout the paper, we assume the data is embedded in a two-dimensional space, prompting the use

of a quadtree. When embedding the data in three dimensions, an octtree is used instead.

7

van der Maaten

A
B

C

D

E

F
G

H I

A B C D E F G H I

Figure 1: Illustration of a quadtree that was constructed on a data set of nine two-
dimensional data points. The top half of the figure illustrates the structure of the
tree that represents the partitioning of the two-dimensional space shown in the
lower half of the figure. Corresponding colors are used to highlight corresponding
elements of the graph and the space partitioning. Nodes in the graph correspond
to square cells in the space (deeper nodes correspond to smaller cells). In each
node, we store: (1) the number of points that are located in the corresponding
cell and (2) the center-of-mass of those points (the centers-of-mass of the three
highlighted cells are illustrated by the opaque circles in the space partitioning).
The opaque parts of the tree are not actually created, because the corresponding
parts of the space do not contain any data points. Leaf nodes represent cells that
contain at most one data point. As a result, denser areas of the space correspond
to parts of the tree that are deeper.

constructed in O(N) time by inserting the points one-by-one, splitting a leaf node whenever
a second point is inserted in its cell, and updating ycell and Ncell of all visited nodes. Note
that the in denser regions of the embedding, the quadtree is deeper than in regions with
sparse data.

To approximate the repulsive part of the gradient, Frep, we note that if a cell is suffi-
ciently small and sufficiently far away from point yi, the contributions −q2ijZ(yi − yj) to
Frep will be roughly similar for all points yj inside that cell. We can, therefore, approxi-

8

Accelerating t-SNE using Tree-Based Algorithms

mate these contributions by −Ncellq
2
i,cellZ(yi − ycell), where Ncell represents the number of

points inside the cell, ycell represents the center-of-mass of the cell, and where we define
qi,cellZ = (1+‖yi−ycell‖2)−1. We first approximate FrepZ = −q2ijZ2(yi−yj) by performing
a depth-first search on the quadtree, assessing at each node whether or not that node may
be used as a “summary” for all the embedding points that are located in the corresponding
cell. During this search, we also construct an estimate of Z =

∑
i 6=j(1 + ‖yi − yj‖2)−1 in

the same way. The two approximations thus obtained are then used to compute Frep via

Frep =
FrepZ
Z .

We use the condition proposed by Barnes and Hut (1986) to decide whether a cell may
be used as a “summary” for all points in that cell. The condition compares the distance
between the cell and the target point with the size of that cell:

rcell
‖yi − ycell‖2

< θ, (9)

where rcell represents the length of the diagonal of the cell under consideration and θ
is a threshold that trades off speed and accuracy (higher values of θ lead to faster but
coarser approximations). Note that when θ = 0, all pairwise interactions are computed,
and the Barnes-Hut approximation reduces to naive computation of the t-SNE gradient. In
preliminary experiments, we also explored various other conditions that take into account
the rapid decay of the Student-t tail, but we did not find these alternative conditions to
lead to a better accuracy-speed trade-off. The problem of more complex conditions is that
they require expensive computations at each cell. By contrast, the condition in Equation 9
can be evaluated very rapidly.

4.3 Dual-tree Approximation

Whilst the Barnes-Hut algorithm considers point-cell interactions, further speed-ups may
be obtained by computing only cell-cell interactions. This can be done using a dual-tree
algorithm of Gray and Moore (2001). The dual-tree algorithm simultaneously traverses the
same quadtree twice in a depth-first manner. For every pair of nodes, the dual-tree algorithm
decides whether or not the interaction between the cells of quadtree A and quadtree B
can be used as “summary” for the interactions between all points inside these two cells
(note that quadtree A and B are identical trees). If the summary condition is passed, the
corresponding force is computed. Subsequently, we perform the following additions: (1) we
add to all children of the node under consideration in tree A the product of the force and the
number of children in the relevant node of tree B; and (2) we add to all children of the node
under consideration in tree B the product of the force and the number of children in the
node of tree A. Subsequently, all children of the cells in quadtree A and B are pruned. In the
dual-tree approximation, we use the following condition to check whether the interaction
between a pair of nodes may be used as a “summary” interaction:

max(rcell−A, rcell−B)

‖ycell−A − ycell−B‖2
< θ, (10)

where ycell−A and ycell−B represent the center-of-mass of the two cells from quadtree A and
B under consideration and where rcell−A and rcell−B represent the diameter of these two

9

van der Maaten

A
B

C

D

E

F
G

H I

A B C D E F G H I

3x

rcell

kyi � ycellk2
< ✓

Figure 2: Illustration of the Barnes-Hut approximation. To evaluate the t-SNE gradient for
point I, the Barnes-Hut algorithm performs a depth-first search on the embedding
quadtree, checking at every node whether or not the node may be used as a
“summary”. In the illustration, the cell containing points A, B, and C satisfies
the summary-condition: the force between the center-of-mass of the three points
(which is stored in the quadtree node) and point I is computed, multiplied by the
number of points in the cell (i.e., by three), and added to the gradient for point
I. All children of the summary node are pruned from the depth-first search.

cells. As before, we compute the attractive part of the t-SNE gradient in Eqn. 8 exactly in
dual-tree t-SNE. However, in dual-tree t-SNE, the dual-tree algorithm is used to compute
the repulsive part, Frep, of the t-SNE gradient. Note that the optimal value for θ generally
differs between Barnes-Hut and dual-tree algorithms, because both algorithms summarize
interactions differently.

Whilst the dual-tree algorithm may lead to significant reductions in the number of
pairwise forces that needs to be computed compared to the Barnes-Hut algorithm, the
computational advantages of the dual-tree algorithm are smaller than one might initially
expect when the dual-tree algorithm is used to approximate the t-SNE gradient. Specifically,
the problem is that after computing an interaction between two cells, one still needs to
determine to which set of points the interaction applies. That is, we need to perform
an additional search to determine which points are located in the cell corresponding to the

10

Accelerating t-SNE using Tree-Based Algorithms

nodes under consideration (in both tree A and B), because the force needs to be added to all
those points (after multiplication with the appropriate number of children). Alternatively,
we could construct and store a list of all children for each node during tree construction,
but this is computationally equally costly and requires substantial additional memory4.

5. Experiments

We performed experiments on five large data sets to evaluate the performance of the
Barnes-Hut and dual-tree variants of t-SNE. An implementation of the two algorithms
(as well as an implementation of the original t-SNE algorithm) is available from http:

//homepage.tudelft.nl/19j49/tsne. We describe the data sets we used in our experi-
ments in Section 5.1. The setup of our experiments is presented in Section 5.2, and the
results of our experiments are presented in Section 5.3.

5.1 Data Sets

We performed experiments on five data sets: (1) the MNIST data set, (2) the CIFAR-10
data set, (3) the NORB data set, (4) the street view house numbers data set, and (5) the
TIMIT data set. We briefly describe each of the five data sets as well as the preprocessing
we applied on the data below.

MNIST. The MNIST data set contains N=70, 000 grayscale handwritten digit images
of size D=28×28=784 pixels (real-valued between 0 and 1), each of which corresponds to
one of ten classes. We directly use the pixel values as input into our embedding algorithms
without any further preprocessing.

CIFAR-10. The CIFAR-10 data set (Krizhevsky, 2009) is an annotated subset of the
80 million tiny images data set of Torralba et al. (2008) that contains N = 70, 000 RGB
images of size 32×32 pixels. Each image corresponds to one of ten classes. To extract
features from the images, we trained a convolutional network with three convolutional
layers on the training images using Caffe (Jia, 2013). We used a network with the following
structure: (1) two convolutional layers that contain 32 filters of size 5×5, compute rectified
linear unit (ReLU) activations, perform max-pooling over 3× 3 patches, and perform local
response normalization over 3 × 3 patches; (2) one convolutional layer with 64 filters of
size 5 × 5, ReLU activations, and average pooling over 3 × 3 patches; and (3) a final fully
connected layer followed by a softmax activation function. The weights of the network
were randomly initialized by sampling from a Gaussian distribution with a small variance;
all biases were initialized to zero. The network was trained to minimize cross-entropy
loss with hundred full sweeps through the data using mini-batches of size 100, a slowly
decaying learning rate, and a momentum term of 0.9. The network was regularized using
standard (L2) weight decay, using λ = 0.004. The resulting network obtained a training
error of 0.1087 and a test error of 0.1870 on the CIFAR-10 data set, which is on par with
the performance of convolutional networks (without data augmentation) on this data set
reported in prior studies (Krizhevsky, 2009; Hinton et al., 2012). We used the activations

4. Note that the problem sketched does not come into play when approximating the value of the t-SNE cost
function, as in that computation, the interaction sums are summed over all N points anyway. Therefore,
evaluation of the t-SNE cost function is indeed much faster via a dual-tree algorithm.

11

http://homepage.tudelft.nl/19j49/tsne
http://homepage.tudelft.nl/19j49/tsne

van der Maaten

Computation time Nearest neighbor error

����	����������
���
���		������

Figure 3: Computation time (in seconds) required to embed 70, 000 MNIST digits using
two accelerated variants of t-SNE (left) and the 1-nearest neighbor errors of the
corresponding embeddings (right) as a function of the trade-off parameter θ. The
green lines represent the performance of the Barnes-Hut approximation, whereas
the red lines represent the performance of the dual-tree approximation. Note that
the special case θ = 0 corresponds to standard t-SNE.

in the last convolutional layer (after the average pooling) as D=1, 024-dimensional features
for the images. Please note that supervised information was used to obtain these features.

NORB. The (small) NORB data set (LeCun et al., 2004) contains grayscale images of
toys from five different classes, rendered on a uniform background under 6 lighting condi-
tions, 9 elevations (30 to 70 degrees every 5 degrees), and 18 azimuths (0 to 340 every 20
degrees). All N = 48, 600 images contain 96×96 = 9, 216 pixels. We preprocess the images
using a simple high-pass filter (specifically, a Laplacian-of-Gaussian filter with σ2 = 1 pix-
els) in order to remove low-frequency information such as the intensity value of the image
background. This leads to feature representations of dimensionality D=9, 216, which were
used as input into the embedding algorithms.

Street View House Numbers. The street view house numbers (SVHN) data set
contains N = 630, 420 labeled color images of house numbers from Google Street View
(Netzer et al., 2011). The images are cropped to a size of 32×32 pixels. To extract features
from these images, we trained a convolutional network with the following architecture: (1)
a convolutional layer with 32 filters of size 5× 5, max-pooling over 3× 3-pixel regions, and
ReLU activations; (2) a convolutional layer with 32 filters of size 5 × 5, ReLU activations,
and average-pooling over 3 × 3-pixel regions; (3) a convolutional layer with 64 filters of
size 5× 5, ReLU activations, and average-pooling over 3× 3-pixel regions; and (4) a fully-
connected layer with softmax units. We trained the network to minimize the cross-entropy
loss using Caffe (Jia, 2013) with one full sweep through the training data using mini-batches
of size 100, a fixed learning rate of 0.001, and a momentum term of 0.9. The network was
regularized using weight decay with λ=0.004. The resulting network has a training error of

12

Accelerating t-SNE using Tree-Based Algorithms

Computation time Nearest neighbor error

����	�	������
���
�����������
������

������

����	�	������
���
�����������
������

������

Figure 4: Compution time (in seconds) required to embed MNIST digits (left) and the 1-
nearest neighbor errors of the corresponding embeddings (right) as a function
of data set size N for standard t-SNE (in blue), Barnes-Hut t-SNE (in green),
and dual-tree t-SNE (in red). Note that the required computation time, which is
shown on the y-axis of the left figure, is plotted on a logarithmic scale.

5.06% and a test error of 10.28%, which is roughly on par with the performance of vanilla
convolutional networks reported by Sermanet et al. (2012). We used the D=64 activations
in the last convolutional layer as features for the house number images. Please note that
supervised information was used to obtain these features.

TIMIT. The TIMIT data set contains 3, 696 spoken utterances5 (with a total of N =
1, 105, 455 frames) by both male and female speakers. Each frame of the utterances is
labeled according to one of 39 phones. The features that we used in our experiments are 13
mel-frequency cepstral coefficients (MFCC features) computed on sliding windows of speech
with 25 ms windows at a 10 ms frame rate. In addition, we employ the corresponding delta
features and delta-delta features (Sha and Saul, 2006), which leads to a 39-dimensional
feature representation. For each frame, all MFCC features within a window of width 7 are
concatenated, leading to D = 273-dimensional feature vectors that are used as input data.

5.2 Experimental Setup

In all experiments, we follow the experimental setup of van der Maaten and Hinton (2008)
as closely as possible. In particular, we initialize the embedding E by sampling the points
yi from a Gaussian with a variance of 10−4, and we run a gradient-descent optimizer for
1, 000 iterations, setting the initial step size to 200. We update the step size during the
optimization using the scheme of Jacobs (1988). We use an additional momentum term
that has weight 0.5 during the first 250 iterations, and 0.8 afterwards. In all experiments,

5. We only used the TIMIT training set in our experiments.

13

van der Maaten

the perplexity u used to compute the input similarities is fixed to 50. All data sets were
preprocessed using PCA to reduce their dimensionality to 50 before t-SNE was performed.

During the first 250 learning iterations, we multiplied all pij-values by a user-defined
constant α > 1. As explained by van der Maaten and Hinton (2008), this trick enables
t-SNE to find a better global structure in the early stages of the optimization by creating
very tight clusters of points that can easily move around in the embedding space. In
preliminary experiments, we found that this trick becomes increasingly important to obtain
good embeddings when the data set size increases, as it becomes harder for the optimization
to find a good global structure when there are more points in the embedding because there
is less space for clusters to move around. In our experiments, we fix α= 12 (by contrast,
van der Maaten and Hinton (2008) used α=4).

5.3 Results

We present the results of three sets of experiments. In the first experiment, we investigate
the effect of the trade-off parameter θ on the speed and the quality of embeddings produced
by Barnes-Hut t-SNE and dual-tree t-SNE on the MNIST data set. In the second exper-
iment, we investigate the computation time required by both approaches as a function of
the number of input objects N (also on the MNIST data set). In the third experiment,
we construct and visualize embeddings of all five data sets. All computation times were
measured on a laptop computer with an Intel Core i5 4258U CPU running at 2.6GHz.

Experiment 1. Figure 3 presents the results of experiments with Barnes-Hut t-SNE
and dual-tree t-SNE in which we varied the speed-accuracy trade-off parameter θ used to
construct the embedding. The figure shows the computation time required to construct
embeddings of all 70, 000 MNIST digit images, as well as the 1-nearest neighbor error (com-
puted based on the digit labels) of the corresponding embeddings. The nearest-neighbor
error of an embedding is a measure for the quality of an embedding. Note that the special
case θ = 0 corresponds to standard t-SNE of van der Maaten and Hinton (2008); we did not
perform an experiment with θ = 0 because standard t-SNE would take too long to complete
on the full MNIST data set.

The results presented in the figure highlight the merits of using tree-based t-SNE algo-
rithms. In particular, the results show that Barnes-Hut t-SNE with θ = 0.5 and dual-tree
t-SNE with θ = 0.2 lead to embeddings that are of the same quality as those obtained
with standard t-SNE (when quality is measured in terms of nearest-neighbor errors in the
embedding). At the same time, increasing the value of θ to these values leads to very
substantial improvements in terms of the amount of computation required to construct the
embedding: for example, Barnes-Hut t-SNE requires only 751 seconds to embed all 70, 000
MNIST digits when θ = 0.5, whereas the original t-SNE algorithm would have taken many
days to complete. The results presented in the figure also suggest that dual-tree t-SNE has
a slightly worse speed-accuracy trade-off than Barnes-Hut t-SNE: Barnes-Hut t-SNE with
θ = 0.5 leads to an embedding of slightly higher quality than dual-tree t-SNE with θ = 0.2,
whilst at the same time requiring fewer computational resources.

Experiment 2. In Figure 4, we compare standard t-SNE, Barnes-Hut t-SNE, and dual-
tree t-SNE in terms of: (1) the computation time required for the embedding of MNIST
digit images as a function of the data set size N and (2) the 1-nearest neighbor errors of

14

Accelerating t-SNE using Tree-Based Algorithms

MNIST: 12m 31s

CIFAR-10: 13m 20s

Figure 5: Barnes-Hut t-SNE visualizations obtained with θ = 0.5 of two data sets: MNIST
handwritten digits (top) and CIFAR-10 tiny images (bottom). The colors of the
points indicate the classes of the corresponding objects. The titles of the fig-
ures indicate the computation time that was used to construct the corresponding
embeddings. Figure best viewed in color.

15

van der Maaten

NORB: 6m 30s

SVHN: 2h 57m 15s

Figure 6: Barnes-Hut t-SNE visualizations obtained with θ = 0.5 of two data sets: NORB
object images (top), and street view house numbers (SVHN) data set (bottom).
The colors of the points indicate the classes of the corresponding objects. The
titles of the figures indicate the computation time that was used to construct the
corresponding embeddings. Figure best viewed in color.

16

Accelerating t-SNE using Tree-Based Algorithms

TIMIT: 3h 48m 12s

Figure 7: Barnes-Hut t-SNE visualization obtained with θ = 0.5 of the TIMIT speech
frames data set. The left figure shows a scatter plot in which the colors of the
points indicate the classes of the corresponding objects. The right figure shows a
Parzen density estimate of the two-dimensional embedding. The title of the figure
indicates the computation time that was used to construct the corresponding
embeddings. Figure best viewed in color.

the corresponding embeddings. Note that the y-axis of the left figure, which represents the
required computation time in seconds, uses a logarithmic scale. Based on the results of the
previous experiment 1, we fixed the parameter θ to 0.5 in the experiments with Barnes-Hut
t-SNE; in the experiments with dual-tree t-SNE, we fixed θ to 0.2.

The results presented in Figure 4 show that both Barnes-Hut t-SNE and dual-tree t-
SNE are indeed orders of magnitude faster than standard t-SNE, whilst the difference in
quality of the constructed embeddings (which is measured by the nearest-neighbor errors)
is negligible. Most prominently, the computational advantages of Barnes-Hut t-SNE and
dual-tree t-SNE rapidly increase as the number of objects in the data set N increases.
The results also suggest that a fixed value of θ = 0.5 for Barnes-Hut t-SNE and θ = 0.2
for dual-tree t-SNE appears to work well across a range of data set sizes N . As in the
first experiment, the results of this experiment also suggest that Barnes-Hut t-SNE slightly
outperforms dual-tree t-SNE in terms of the trade-off between quality of the embedding
and the associated computational costs.

17

van der Maaten

Experiment 3. Figure 5, 6, and 7 present embeddings of all five data sets constructed
by Barnes-Hut t-SNE with θ = 0.5. The colors of the points indicate the classes of the
corresponding objects; the titles of the plots indicate the computation time that was used
to construct the corresponding embeddings.

The visualization in the top part of Figure 5 shows that Barnes-Hut t-SNE can effi-
ciently construct high-quality embeddings of the 70, 000 MNIST handwritten digit images:
although no supervised information was used, all ten digit classes are clearly separated in an
embedding that was constructed in just over 12 minutes. Although our MNIST embedding
contains many more points, it may be compared with that presented by van der Maaten
and Hinton (2008). Visually, the structure of the two embeddings is very similar.

The results on the CIFAR-10 data set (in the bottom part of Figure 5) show a reasonably
good separation of classes; in particular, classes such as truck and ship are clearly separated
from the other classes. To evaluate the quality of the CIFAR-10 embedding, we measured
the generalization error of an 11-nearest neighbor classifier that was trained on the 2D
representation of the training instances and evaluated on the 2D representation of the test
instances (note that the figure shows a joint embedding of training and test data): the
generalization error of this classifier 0.2467, which is not much worse than the performance
of a logistic regressor trained on the original D=1, 024-dimensional features.

The results obtained on the NORB data set are presented in the top part of Figure 6,
and reveal a clear separation of the five classes even though supervised information was
not used in the construction of the embedding. In addition, the embedding of the NORB
images accurately reveals the rotation manifolds that are present in the NORB data set. The
different rotation manifolds that belong to the same class correspond to different elevations
and lighting conditions.

The results obtained on the street view house numbers (SVHN) data set in the bottom
part of Figure 6 show that Barnes-Hut SNE can also model the global structure of the data
correctly when the data set becomes very large (recall that there are 630, 420 images in
the SVHN data set): all classes are quite well separated in the embedding of the SVHN
data set, with the exception of a group of images in which the house numbers are difficult
to recognize and that are grouped in the center of the embedding. Further analysis of
the SVHN embedding revealed that the majority of misclassifications by the convolutional
network are indeed located in this central region of the embedding.

The results presented in the Figure 7 show that tree-based variants of t-SNE make it
practical to embed data sets with more than a million data points: the TIMIT embed-
ding shows all 1, 105, 455 speech segments, and was constructed in less than four hours.
It should be noted here that scatter plots depicting embeddings of millions of instances
may not accurately visualize the underlying (class-conditional) densities. To illustrate this
problem, the right part of Figure 7 shows a Parzen density estimate of the two-dimensional
embedding. This density estimate clearly shows that the density of points is not nearly
uniform over the embedding space, even though the scatter plot does suggest this. In fact,
inspection of the density estimates of the individual classes reveals that most classes are in
fact modeled by small, dense clusters in the two-dimensional embedding. This suggests the
use of class-conditional density maps (van Eck and Waltman, 2010) for the visualization of
such large-scale embeddings.

18

Accelerating t-SNE using Tree-Based Algorithms

A version of the MNIST embedding in which the original digit images are shown is
presented in Figure 8. The insets in this figure reveal that, like standard t-SNE, Barnes-
Hut t-SNE is very good at preserving local structure of the data in the embedding: for
instance, the visualization clearly shows that orientation is one of the main sources of
variation within the cluster of ones. Embeddings in which the original CIFAR-10, NORB,
and SVHN images are presented in the online supplemental material.

6. Conclusion

We investigated two tree-based implementations of t-SNE (van der Maaten and Hinton,
2008), called Barnes-Hut t-SNE and dual-tree t-SNE, that: (1) construct a sparse approxi-
mation of the similarities between input objects using vantage-point trees and (2) approx-
imate the t-SNE gradient by computing interactions between groups of points instead of
between pairs of points. The new t-SNE variants run in O(N logN) rather than O(N2),
and require only O(N) memory. Our experimental evaluation of Barnes-Hut t-SNE and
dual-tree t-SNE shows that both algorithms are substantially faster than standard t-SNE,
and that both facilitate the visualization of data sets with millions of input objects in scatter
plots. The results of our experiments suggest that Barnes-Hut t-SNE slightly outperforms
dual-tree t-SNE (in terms of the trade-off between accuracy and speed) due to the additional
bookkeeping that is required in dual-tree t-SNE.

A drawback of the Barnes-Hut variant of t-SNE is that the gradient approximations do
not provide any error bounds and can in fact be unbounded (Salmon and Warren, 1994). By
contrast, dual-tree and fast multipole methods do provide such error bounds, e.g., (Warren
and Salmon, 1993; Gray and Moore, 2001; Baxter and Roussos, 2002; Wan and Karniadakis,
2006). None of these bounds, however, takes into account the iterative nature of t-SNE,
i.e., the fact that errors may propagate during learning. Vladymyrov and Carreira-Perpiñán
(2014) present an error bound that incorporates the iterative nature of SNE-like embedding
techniques, but makes strong assumptions on the error per iteration to achieve this bound.
de Freitas et al. (2006) present stability results for Krylov subspace iteration, but it is
unclear how these results extend to Barnes-Hut and dual-tree t-SNE. In general, we believe
the lack of formal error bounds is acceptable because the t-SNE objective function is non-
convex anyway: as long as the inner product between the gradient estimate and the true
gradient remains positive, we are still guaranteed to converge to a local minimum of the
objective function (assuming the step size is set properly; Zoutendijk (1960)).

Another limitation of Barnes-Hut t-SNE and dual-tree t-SNE is that the algorithms can
only be used to embed data in two or three dimensions. Generalizations to higher dimensions
are impractical because the size of the tree grows exponentially in the dimensionality of the
embedding space. Having said that, this limitation is not very severe since t-SNE is mainly
used for visualization of data in scatter plots (i.e., for embedding in two or three dimensions).
Moreover, it is straightforward to replace the quadtrees used in this paper by metric trees
that scale better to high-dimensional embedding spaces.

19

van der Maaten

(1) (2)

(3)

(4)

(5)

(6)

Figure 8: Barnes-Hut t-SNE visualization of all 70, 000 MNIST handwritten digit images
(constructed in 10 minutes and 45 seconds using θ = 0.5). The insets (from the
top left, clockwise) show (1) twos in a curl style grouped together, (2) similarly
oriented ones ranging from fat to thin, (3) continental sevens grouped separately
from other sevens, (4) similar fours, (5) round zeros ranging from thin to fat, and
(6) similar threes. Zoom in on the visualization for more detailed views.

20

Accelerating t-SNE using Tree-Based Algorithms

Acknowledgments

The research leading to these results has received funding from the Netherlands Organiza-
tion for Scientific Research (NWO) under grant agreement no 612.001.301, and from the
European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no

604102. The author thanks Geoffrey Hinton for many helpful discussions, and three anony-
mous reviewers for suggestions that helped to improve the paper.

References

J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324
(4):446–449, 1986.

B.J.C. Baxter and G. Roussos. A new error estimate of the fast Gauss transform. SIAM
Journal on Scientific Computation, 24(1):257–259, 2002.

R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. Acta
Informatica, 1(3):173–189, 1972.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings
of the International Conference on Machine Learning, pages 97–104, 2006.

S. Brin. Near neighbor search in large metric spaces. In Proceedings of the International
Conference on Very Large Data Bases, pages 574–584, 1995.

C.J.C. Burges. Dimension reduction: A guided tour. Foundations and Trends in Machine
Learning, 2(4):1–95, 2010.

M.Á. Carreira-Perpiñán. The elastic embedding algorithm for dimensionality reduction. In
Proceedings of the International Conference on Machine Learning, pages 167–174, 2010.

M. Chalmers. A linear iteration time layout algorithm for visualising high-dimensional data.
In Proceedings of IEEE Visualization, pages 127–132, 1996.

K. Cho, B. van Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learn-
ing phrase representations using rnn encoder-decoder for statistical machine translation.
In arXiv 1406.1078, 2014.

D.J. Croton, V. Springel, S.D.M. White, G. De Lucia, C.S. Frenk, L. Gao, A. Jenkins,
G. Kauffmann, J.F. Navarro, and N. Yoshida. The many lives of active galactic nuclei:
cooling flows, black holes and the luminosities and colours of galaxies. Monthly Notices
of the Royal Astronomical Society, 365(1):11–28, 2006.

N. de Freitas, Y. Wang, M. Mahdaviani, and D. Lang. Fast Krylov methods for N-body
learning. In Advances in Neural Information Processing Systems, volume 18, pages 251–
258, 2006.

J.H. Freidman, J.L. Bentley, and R.A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3:209–226,
1977.

21

van der Maaten

T.M.J. Fruchterman and E.M. Reingold. Graph drawing by force-directed placement. Soft-
ware: Practice and Experience, 21(11):1129–1164, 1991.

K. Fukunaga and P.M. Narendra. A branch and bound algorithm for computing k-nearest
neighbors. IEEE Transactions on Computers, 24:750–753, 1975.

A.G. Gray. Fast kernel matrix-vector multiplication with application to gaussian process
learning. Technical Report CMU-CS-04-110, Carnegie Mellon University, 2004.

A.G. Gray and A.W. Moore. N-body problems in statistical learning. In Advances in Neural
Information Processing Systems, pages 521–527, 2001.

A.G. Gray and A.W. Moore. Rapid evaluation of multiple density models. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, 2003.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Com-
putational Physics, 73:325–348, 1987.

J. Heer, M. Bostock, and V. Ogievetsky. A tour through the visualization zoo. Communi-
cations of the ACM, 53:59–67, 2010.

G.E. Hinton and S.T. Roweis. Stochastic Neighbor Embedding. In Advances in Neural
Information Processing Systems, volume 15, pages 833–840, 2003.

G.E Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. In arXiv 1207.0580,
2012.

Y. Hu. Efficient and high-quality force-directed graph drawing. The Mathematica Journal,
10(1):37–71, 2005.

P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of 30th Symposium on Theory of Computing, 1998.

R.A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
Networks, 1:295–307, 1988.

S. Ji. Computational genetic neuroanatomy of the developing mouse brain: dimensionality
reduction, visualization, and clustering. BMC Bioinformatics, 14(222):1–14, 2013.

Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding. http:
//caffe.berkeleyvision.org/, 2013.

D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann. Mastering the Information Age:
Solving Problems with Visual Analytics. Eurographics Association, Germany, 2010.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

C.C. Laczny, N. Pinel, N. Vlassis, and P. Wilmes. Alignment-free visualization of metage-
nomic data by nonlinear dimension reduction. Scientific Reports, 4:1–12, 2014.

22

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/

Accelerating t-SNE using Tree-Based Algorithms

D. Lang, M. Klaas, and N. de Freitas. Empirical testing of fast kernel density estimation
algorithms. Technical Report TR-2005-03, University of British Columbia, 2005.

N.D. Lawrence. Spectral dimensionality reduction via maximum entropy. Proceedings of
the International Conference on Artificial Intelligence and Statistics, JMLR W&CP, 15:
51–59, 2011.

Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 97–104, 2004.

T. Liu, A.W. Moore, A. Gray, and K. Yang. An investigation of practical approximate
nearest neighbor algorithms. In Advances in Neural Information Processing Systems,
volume 17, pages 825–832, 2004.

M. Mahdaviani, N. de Freitas, B. Fraser, and F. Hamze. Fast computational methods for
visually guided robots. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 138–143, 2005.

M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In Proceedings of the International Conference on Computer Vision Theory
and Applications, 2009.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2161–2168,
2006.

A. Quigley and P. Eades. FADE: Graph drawing, clustering, and visual abstraction. In
Proceedings of the International Symposium on Graph Drawing, pages 197–210, 2000.

V.C. Raykar and R. Duraiswami. Fast optimal bandwidth selection for kernel density
estimation. In Proceedings of the 2006 SIAM International Conference on Data Mining,
pages 524–528, 2006.

V. Rokhlin. Rapid solution of integral equations of classic potential theory. Journal of
Computational Physics, 60:187–207, 1985.

S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by Locally Linear Embed-
ding. Science, 290(5500):2323–2326, 2000.

R.R. Salakhutdinov and G.E. Hinton. Semantic hashing. In Proceedings of the SIGIR
Workshop on Information Retrieval and Applications of Graphical Models, pages 52–63,
2007.

J.K. Salmon and M.S. Warren. Skeletons from the treecode closet. Journal of Computational
Physics, 111(1):136–155, 1994.

23

van der Maaten

L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, and D.D. Lee. Spectral methods for dimen-
sionality reduction. In Semisupervised Learning. The MIT Press, 2006.

P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house
numbers digit classification. In Proceedings of the International Conference on Pattern
Recognition, pages 3288–3291, 2012.

F. Sha and L.K. Saul. Large margin Gaussian mixture modeling for phonetic classification
and recognition. In Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, pages 265–268, 2006.

C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image descriptor matching. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2008.

V. Springel, N. Yoshidaa, and S.D.M. White. GADGET: A code for collisionless and
gasdynamical cosmological simulations. New Astronomy, 6(2):79–117, 2001.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

P. Tiño and I.T. Nabney. Hierarchical GTM: Constructing localized nonlinear projection
manifolds in a principled way. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(5):639–656, 2002.

A. Torralba, R. Fergus, and W.T. Freeman. 80 million tiny images: A large dataset for
non-parametric object and scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(11):1958–1970, 2008.

L.J.P. van der Maaten. Learning a parametric embedding by preserving local structure.
In Proceedings of the International Conference on Artificial Intelligence and Statistics,
JMLR W&CP, volume 5, pages 384–391, 2009.

L.J.P. van der Maaten. Barnes-Hut-SNE. In Proceedings of the International Conference
on Learning Representations, 2013.

L.J.P. van der Maaten and G.E. Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(Nov):2431–2456, 2008.

L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. Dimensionality reduction: A
comparative review. Technical Report TiCC-TR 2009-005, Tilburg University, 2009.

N.J. van Eck and L. Waltman. Software survey: Vosviewer, a computer program for bib-
liometric mapping. Scientometrics, 84:523–538, 2010.

J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval perspective to
nonlinear dimensionality reduction for data visualization. Journal of Machine Learning
Research, 11(Feb):451–490, 2010.

M. Vladymyrov and M.Á. Carreira-Perpiñán. Partial-Hessian strategies for fast learning
of nonlinear embeddings. In Proceedings of the International Conference on Machine
Learning, pages 345–352, 2012.

24

Accelerating t-SNE using Tree-Based Algorithms

M. Vladymyrov and M.Á. Carreira-Perpiñán. Entropic affinities: Properties and efficient
numerical computation. Proceedings of the International Conference on Machine Learn-
ing, JMLR W&CP, 28(3):477–485, 2013.

M. Vladymyrov and M.A. Carreira-Perpiñán. Linear-time training of nonlinear low-
dimensional embeddings. In Proceedings of the International Conference on Artificial
Intelligence and Statistics. JMLR: W&CP, volume 33, pages 968–977, 2014.

X. Wan and G.E. Karniadakis. A sharp error estimate for the fast gauss transform. Journal
of Computational Physics, 219(1):7–12, 2006.

M.S. Warren and J.K. Salmon. A parallel hashed octtree N-body algorithm. In Proceedings
of the ACM/IEEE Conference on Supercomputing, pages 12–21, 1993.

Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in Neural Information
Processing Systems, pages 1753–1760, 2008.

C. Yang, R. Duraiswami, N.A. Gumerov, and L. Davis. Improved fast Gauss transform and
efficient kernel density estimation. In Proceedings of the IEEE International Conference
on Computer Vision, pages 664–671, 2003.

Z. Yang, J. Peltonen, and S. Kaski. Scalable optimization of neighbor embedding for visu-
alization. In Proc. of the Int. Conf. on Machine Learning, 2013.

P.N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric
spaces. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages
311–321, 1993.

G. Zoutendijk. Methods of Feasible Directions. Elsevier Publishing Company, Amsterdam,
The Netherlands, 1960.

25

	Introduction
	Related work
	t-Distributed Stochastic Neighbor Embedding
	Tree-Based Algorithms for t-SNE
	Approximating Input Similarities
	Barnes-Hut Approximation
	Dual-tree Approximation

	Experiments
	Data Sets
	Experimental Setup
	Results

	Conclusion

