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Abstract

In recent years, a variety of nonlinear dimensionality reduction techniques have been
proposed that aim to address the limitations of traditional techniques such as PCA
and classical scaling. The paper presents a review and systematic comparison of
these techniques. The performances of the nonlinear techniques are investigated on
artificial and natural tasks. The results of the experiments reveal that nonlinear tech-
niques perform well on selected artificial tasks, but that this strong performance does
not necessarily extend to real-world tasks. The paper explains these results by identi-
fying weaknesses of current nonlinear techniques, and suggests how the performance
of nonlinear dimensionality reduction techniques may be improved.
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1 Introduction

Real-world data, such as speech signals, digital photographs, or fMRI scans, usually has a high dimen-
sionality. In order to handle such real-world data adequately, its dimensionality needs to be reduced.
Dimensionality reduction is the transformation of high-dimensional data into a meaningful representa-
tion of reduced dimensionality. Ideally, the reduced representation should have a dimensionality that
corresponds to the intrinsic dimensionality of the data. The intrinsic dimensionality of data is the mini-
mum number of parameters needed to account for the observed properties of the data [49]. Dimension-
ality reduction is important in many domains, since it mitigates the curse of dimensionality and other
undesired properties of high-dimensional spaces [69]. As a result, dimensionality reduction facilitates,
among others, classification, visualization, and compression of high-dimensional data. Traditionally, di-
mensionality reduction was performed using linear techniques such as Principal Components Analysis
(PCA) [98], factor analysis [117], and classical scaling [126]. However, these linear techniques cannot
adequately handle complex nonlinear data.

In the last decade, a large number of nonlinear techniques for dimensionality reduction have been
proposed. See for an overview, e.g., [26, 110, 83, 131]. In contrast to the traditional linear techniques,
the nonlinear techniques have the ability to deal with complex nonlinear data. In particular for real-
world data, the nonlinear dimensionality reduction techniques may offer an advantage, because real-
world data is likely to form a highly nonlinear manifold. Previous studies have shown that nonlinear
techniques outperform their linear counterparts on complex artificial tasks. For instance, the Swiss roll
dataset comprises a set of points that lie on a spiral-like two-dimensional manifold that is embedded
within a three-dimensional space. A vast number of nonlinear techniques are perfectly able to find this
embedding, whereas linear techniques fail to do so. In contrast to these successes on artificial datasets,
successful applications of nonlinear dimensionality reduction techniques on natural datasets are less
convincing. Beyond this observation, it is not clear to what extent the performances of the various
dimensionality reduction techniques differ on artificial and natural tasks (a comparison is performed in
[94], but this comparison is very limited in scope with respect to the number of techniques and tasks
that are addressed).

Motivated by the lack of a systematic comparison of dimensionality reduction techniques, this paper
presents a comparative study of the most important linear dimensionality reduction technique (PCA),
and twelve frontranked nonlinear dimensionality reduction techniques. The aims of the paper are (1)
to investigate to what extent novel nonlinear dimensionality reduction techniques outperform the tradi-
tional PCA on real-world datasets and (2) to identify the inherent weaknesses of the twelve nonlinear
dimensionality reduction techniques. The investigation is performed by both a theoretical and an empir-
ical evaluation of the dimensionality reduction techniques. The identification is performed by a careful
analysis of the empirical results on specifically designed artificial datasets and on a selection of real-
world datasets.

Next to PCA, the paper investigates the following twelve nonlinear techniques: (1) Kernel PCA,
(2) Isomap, (3) Maximum Variance Unfolding, (4) diffusion maps, (5) Locally Linear Embedding,
(6) Laplacian Eigenmaps, (7) Hessian LLE, (8) Local Tangent Space Analysis, (9) Sammon mapping,
(10) multilayer autoencoders, (11) Locally Linear Coordination, and (12) manifold charting. Although
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our comparative review includes the most important nonlinear techniques for dimensionality reduction,
it is not exhaustive. In the appendix, we list other important (nonlinear) dimensionality reduction tech-
niques that are not included in our comparative review. There, we briefly explain why these techniques
are not included.

The outline of the remainder of this paper is as follows. In Section 2, we give a formal defini-
tion of dimensionality reduction and subdivide the thirteen dimensionality reduction techniques into
nine convex techniques and four non-convex techniques. Section 3 presents and discusses the nine
convex dimensionality reduction techniques. Subsequently, Section 4 describes and discusses the four
non-convex techniques for dimensionality reduction. Section 5 lists all techniques by theoretical char-
acteristics. Then, in Section 6, we present an empirical comparison of all described techniques for
dimensionality reduction on five artificial datasets and five natural datasets. Section 7 discusses the re-
sults of the experiments; moreover, it identifies weaknesses and points of improvement of the selected
nonlinear techniques. Section 8 provides our conclusions.

2 Dimensionality Reduction

The problem of (nonlinear) dimensionality reduction can be defined as follows. Assume we have a
dataset represented in a n×D matrix X consisting of n datavectors xi (i ∈ {1, 2, . . . , n}) with dimen-
sionality D. Assume further that this dataset has intrinsic dimensionality d (where d < D, and often
d � D). Here, in mathematical terms, intrinsic dimensionality means that the points in dataset X are
lying on or near a manifold with dimensionality d that is embedded in the D-dimensional space. Note
that we make no assumptions on the structure of this manifold: the manifold may be non-Riemannian
because of discontinuities (i.e., the manifold may consist of a number of disconnected submanifolds).
Dimensionality reduction techniques transform dataset X with dimensionality D into a new dataset Y
with dimensionality d, while retaining the geometry of the data as much as possible. In general, nei-
ther the geometry of the data manifold, nor the intrinsic dimensionality d of the dataset X are known.
Therefore, dimensionality reduction is an ill-posed problem that can only be solved by assuming cer-
tain properties of the data (such as its intrinsic dimensionality). Throughout the paper, we denote a
high-dimensional datapoint by xi, where xi is the ith row of the D-dimensional data matrix X. The
low-dimensional counterpart of xi is denoted by yi, where yi is the ith row of the d-dimensional data
matrix Y. In the remainder of the paper, we adopt the notation presented above, and we assume the
dataset X is zero-mean.

Figure 1 shows a taxonomy of techniques for dimensionality reduction. We subdivide techniques
for dimensionality reduction into convex and non-convex techniques. Convex techniques optimize an
objective function that does not contain any local optima, whereas non-convex techniques optimize
objective functions that do contain local optima. The further subdivisions in the taxonomy are discussed
in the review in the following two sections.
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Figure 1: Taxonomy of dimensionality reduction techniques.
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3 Convex Techniques for Dimensionality Reduction

Convex techniques for dimensionality reduction optimize an objective function that does not contain
any local optima, i.e., the solution space is convex [22]. Most of the selected dimensionality reduction
techniques fall in the class of convex techniques. In these techniques, the objective function usually has
the form of a (generalized) Rayleigh quotient: the objective function is of the form φ(Y) = YT AY

YT BY . It is
well known that a function of this form can be optimized by solving a generalized eigenproblem. One
technique (Maximum Variance Unfolding) solves an additional semidefinite program using an interior
point method. We subdivide convex dimensionality reduction techniques into techniques that perform
an eigendecomposition of a full matrix (subsection 3.1) and those that perform an eigendecomposition
of a sparse matrix (subsection 3.2).

3.1 Full Spectral Techniques

Full spectral techniques for dimensionality reduction perform an eigendecomposition of a full matrix
that captures the covariances between dimensions or the pairwise similarities between datapoints (pos-
sibly in a feature space that is constructed by means of a kernel function). In this subsection, we discuss
five such techniques: (1) PCA / classical scaling, (2) Isomap, (3) Kernel PCA, (4) Maximum Variance
Unfolding, and (5) diffusion maps. The techniques are discussed separately in subsections 3.1.1 to 3.1.5.

3.1.1 PCA / Classical Scaling

Principal Components Analysis (PCA) [98, 65] is a linear technique for dimensionality reduction, which
means that it performs dimensionality reduction by embedding the data into a linear subspace of lower
dimensionality. Although there exist various techniques to do so, PCA is by far the most popular (unsu-
pervised) linear technique. Therefore, in our comparison, we only include PCA.

PCA constructs a low-dimensional representation of the data that describes as much of the variance
in the data as possible. This is done by finding a linear basis of reduced dimensionality for the data, in
which the amount of variance in the data is maximal.

In mathematical terms, PCA attempts to find a linear mapping M that maximizes the cost function
trace

(
MT cov(X)M

)
, where cov(X) is the sample covariance matrix of the data X. It can be shown

that this linear mapping is formed by the d principal eigenvectors (i.e., principal components) of the
sample covariance matrix of the zero-mean data1. Hence, PCA solves the eigenproblem

cov(X)M = λM. (1)

The eigenproblem is solved for the d principal eigenvalues λ. The low-dimensional data representations
yi of the datapoints xi are computed by mapping them onto the linear basis M, i.e., Y = XM.

PCA is identical to the traditional technique for multidimensional scaling called classical scal-
ing [126]. The input into classical scaling is, like the input into most other multidimensional scaling
techniques, a pairwise Euclidean distance matrix D whose entries dij represent the Euclidean distance
between the high-dimensional datapoints xi and xj . Classical scaling finds the linear mapping M that
minimizes2 the cost function

φ(Y) =
∑
ij

(
d2

ij − ‖yi − yj‖2
)
, (2)

in which ‖yi − yj‖2 is the squared Euclidean distance between the low-dimensional datapoints yi and
yj , yi is restricted to be xiM, and ‖mj‖2 = 1 for ∀j. It can be shown [126, 143] that the minimum

1PCA maximizes MT cov(X)M with respect to M, under the constraint that the L2-norm of each column mj of M is
1, i.e., that ‖mj‖2 = 1. This constraint can be enforced by introducing a Lagrange multiplier λ. Hence, an unconstrained
maximization of mT

j cov(X)mj + λ(1 − mT
j mj) is performed. The stationary points of this quantity are to be found when

cov(X)mj = λmj .
2Note that the pairwise distances between the high-dimensional datapoints are constants in this cost function, and thus

serve no purpose in the optimization. The optimization thus amounts to maximizing
P

ij‖Mxi −Mxj‖2, as a result of which
it maximizes variance in the low-dimensional space (hence, it is identical to PCA).

3



of this cost function is given by the eigendecomposition of the Gram matrix K = XXT of the high-
dimensional data. The entries of the Gram matrix can be obtained by double-centering the pairwise
squared Euclidean distance matrix, i.e., by computing

kij = −1
2

(
d2

ij −
1
n

∑
l

d2
il −

1
n

∑
l

d2
jl +

1
n2

∑
lm

d2
lm

)
. (3)

The minimum of the cost function in Equation 2 can now be obtained by multiplying the principal
eigenvectors of the double-centered squared Euclidean distance matrix (i.e., the principal eigenvectors
of the Gram matrix) with the square-root of their corresponding eigenvalues. The similarity of classical
scaling to PCA is due to a relation between the eigenvectors of the covariance matrix and the Gram
matrix of the high-dimensional data: it can be shown that the eigenvectors ui and vi of the matrices
XT X and XXT are related through

√
λivi = Xui [29]. The connection between PCA and classical

scaling is described in more detail in, e.g., [143, 99].
PCA may also be viewed upon as a latent variable model called probabilistic PCA [103]. This

model uses a Gaussian prior over the latent space, and a linear-Gaussian noise model. The proba-
bilistic formulation of PCA leads to an EM-algorithm that may be computationally more efficient for
very high-dimensional data. By using Gaussian processes, probabilistic PCA may also be extended
to learn nonlinear mappings between the high-dimensional and the low-dimensional space [80]. An-
other extension of PCA also includes minor components (i.e., the eigenvectors corresponding to the
smallest eigenvalues) in the linear mapping, as minor components may be of relevance in classification
settings [141].

PCA and classical scaling have been successfully applied in a large number of domains such as face
recognition [127], coin classification [66], and seismic series analysis [100]. PCA and classical scaling
suffer from two main drawbacks.

First, in PCA, the size of the covariance matrix is proportional to the dimensionality of the data-
points. As a result, the computation of the eigenvectors might be infeasible for very high-dimensional
data. In datasets in which n < D, this drawback may be overcome by performing classical scaling
instead of PCA, because the classical scaling scales with the number of datapoints instead of with the
number of dimensions in the data. Alternatively, iterative techniques such as Simple PCA [96] or prob-
abilistic PCA [103] may be employed.

Second, the cost function in Equation 2 reveals that PCA and classical scaling focus mainly on
retaining large pairwise distances d2

ij , instead of focusing on retaining the small pairwise distances,
which is much more important.

3.1.2 Isomap

Classical scaling has proven to be successful in many applications, but it suffers from the fact that it
mainly aims to retain pairwise Euclidean distances, and does not take into account the distribution of
the neighboring datapoints. If the high-dimensional data lies on or near a curved manifold, such as in
the Swiss roll dataset [122], classical scaling might consider two datapoints as near points, whereas their
distance over the manifold is much larger than the typical interpoint distance. Isomap [122] is a tech-
nique that resolves this problem by attempting to preserve pairwise geodesic (or curvilinear) distances
between datapoints. Geodesic distance is the distance between two points measured over the manifold.
In Isomap [122], the geodesic distances between the datapoints xi (i = 1, 2, . . . , n) are computed by
constructing a neighborhood graph G, in which every datapoint xi is connected with its k nearest neigh-
bors xij (j = 1, 2, . . . , k) in the dataset X. The shortest path between two points in the graph forms an
estimate of the geodesic distance between these two points, and can easily be computed using Dijkstra’s
or Floyd’s shortest-path algorithm [41, 47]. The geodesic distances between all datapoints in X are com-
puted, thereby forming a pairwise geodesic distance matrix. The low-dimensional representations yi of
the datapoints xi in the low-dimensional space Y are computed by applying classical scaling (see 3.1.1)
on the resulting pairwise geodesic distance matrix.

An important weakness of the Isomap algorithm is its topological instability [7]. Isomap may con-
struct erroneous connections in the neighborhood graph G. Such short-circuiting [82] can severely
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impair the performance of Isomap. Several approaches have been proposed to overcome the problem of
short-circuiting, e.g., by removing datapoints with large total flows in the shortest-path algorithm [31]
or by removing nearest neighbors that violate local linearity of the neighborhood graph [111]. A second
weakness is that Isomap may suffer from ‘holes’ in the manifold. This problem can be dealt with by
tearing manifolds with holes [82]. A third weakness of Isomap is that it can fail if the manifold is non-
convex [121]. Despite these three weaknesses, Isomap was successfully applied on tasks such as wood
inspection [94], visualization of biomedical data [86], and head pose estimation [102].

3.1.3 Kernel PCA

Kernel PCA (KPCA) is the reformulation of traditional linear PCA in a high-dimensional space that is
constructed using a kernel function [112]. In recent years, the reformulation of linear techniques using
the ‘kernel trick’ has led to the proposal of successful techniques such as kernel ridge regression and
Support Vector Machines [115]. Kernel PCA computes the principal eigenvectors of the kernel matrix,
rather than those of the covariance matrix. The reformulation of PCA in kernel space is straightforward,
since a kernel matrix is similar to the inproduct of the datapoints in the high-dimensional space that is
constructed using the kernel function. The application of PCA in the kernel space provides Kernel PCA
the property of constructing nonlinear mappings.

Kernel PCA computes the kernel matrix K of the datapoints xi. The entries in the kernel matrix are
defined by

kij = κ(xi, xj), (4)

where κ is a kernel function [115], which may be any function that gives rise to a positive-semidefinite
kernel K. Subsequently, the kernel matrix K is double-centered using the following modification of the
entries

kij = −1
2

(
kij −

1
n

∑
l

kil −
1
n

∑
l

kjl +
1
n2

∑
lm

klm

)
. (5)

The centering operation corresponds to subtracting the mean of the features in traditional PCA: it sub-
tracts the mean of the data in the feature space defined by the kernel function κ. As a result, the data in
the features space defined by the kernel function is zero-mean. Subsequently, the principal d eigenvec-
tors vi of the centered kernel matrix are computed. The eigenvectors of the covariance matrix ai (in the
feature space constructed by κ) can now be computed, since they are related to the eigenvectors of the
kernel matrix vi (see, e.g., [29]) through

ai =
1√
λi

vi. (6)

In order to obtain the low-dimensional data representation, the data is projected onto the eigenvectors
of the covariance matrix ai. The result of the projection (i.e., the low-dimensional data representation
Y) is given by

yi =


n∑

j=1

a
(j)
1 κ(xj , xi), . . . ,

n∑
j=1

a
(j)
d κ(xj , xi)

 , (7)

where a(j)
1 indicates the jth value in the vector a1 and κ is the kernel function that was also used in the

computation of the kernel matrix. Since Kernel PCA is a kernel-based method, the mapping performed
by Kernel PCA relies on the choice of the kernel function κ. Possible choices for the kernel function
include the linear kernel (making Kernel PCA equal to traditional PCA), the polynomial kernel, and the
Gaussian kernel that is given in Equation 8 [115]. Notice that when the linear kernel is employed, the
kernel matrix K is equal to the Gram matrix, and the procedure described above is identical to classical
scaling (see 3.1.1).

An important weakness of Kernel PCA is that the size of the kernel matrix is proportional to the
square of the number of instances in the dataset. An approach to resolve this weakness is proposed
in [124]. Also, Kernel PCA mainly focuses on retaining large pairwise distances (even though these
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are now measured in feature space). Kernel PCA has been successfully applied to, e.g., face recogni-
tion [72], speech recognition [87], and novelty detection [64].

Like Kernel PCA, the Gaussian Process Latent Variable Model (GPLVM) also uses kernel func-
tions to construct non-linear variants of (probabilistic) PCA [80]. However, the GPLVM is not simply
the probabilistic counterpart of Kernel PCA: in the GPLVM, the kernel function is defined over the
low-dimensional latent space, whereas in Kernel PCA, the kernel function is defined over the high-
dimensional data space.

3.1.4 MVU

As described above, Kernel PCA allows for performing PCA in the feature space that is defined by the
kernel function κ. Unfortunately, it is unclear how the kernel function κ should be selected. Maximum
Variance Unfolding (MVU, formerly known as Semidefinite Embedding) is a technique that attempts to
resolve this problem by learning the kernel matrix. MVU learns the kernel matrix by defining a neigh-
borhood graph on the data (as in Isomap) and retaining pairwise distances in the resulting graph [138].
MVU is different from Isomap in that explicitly attempts to ‘unfold’ the data manifold. It does so by
maximizing the Euclidean distances between the datapoints, under the constraint that the distances in
the neighborhood graph are left unchanged (i.e., under the constraint that the local geometry of the
data manifold is not distorted). The resulting optimization problem can be solved using semidefinite
programming. MVU starts with the construction of a neighborhood graph G, in which each datapoint
xi is connected to its k nearest neighbors xij (j = 1, 2, . . . , k). Subsequently, MVU attempts to max-
imize the sum of the squared Euclidean distances between all datapoints, under the constraint that the
distances inside the neighborhood graph G are preserved. In other words, MVU performs the following
optimization problem.

Maximize
∑
ij

‖yi − yj‖2 subject to (1), with:

(1) ‖yi − yj‖2 =‖xi − xj‖2 for ∀(i, j) ∈ G

MVU reformulates the optimization problem as a semidefinite programming problem (SDP) [130] by
defining the kernel matrix K as the outer product of the low-dimensional data representation Y. The
optimization problem then reduces to the following SDP, which learns the kernel matrix K.

Maximize trace(K) subject to (1), (2), and (3), with:

(1) kii + kjj − 2kij = ‖xi − xj‖2 for ∀(i, j) ∈ G

(2)
∑
ij

kij = 0

(3) K � 0

The solution K of the SDP is the kernel matrix that is used as input for Kernel PCA. The low-dimensional
data representation Y is obtained by performing an eigendecomposition of the kernel matrix K that was
constructed by solving the SDP.

MVU has a weakness similar to Isomap: short-circuiting may impair the performance of MVU,
because it adds constraints to the optimization problem that prevent successful unfolding of the mani-
fold. Despite this weakness, MVU was successfully applied to, e.g., sensor localization [139] and DNA
microarray data analysis [71].

3.1.5 Diffusion Maps

The diffusion maps (DM) framework [76, 91] originates from the field of dynamical systems. Diffusion
maps are based on defining a Markov random walk on the graph of the data. By performing the random
walk for a number of timesteps, a measure for the proximity of the datapoints is obtained. Using this
measure, the so-called diffusion distance is defined. In the low-dimensional representation of the data,
the pairwise diffusion distances are retained as good as possible. The key idea behind the diffusion
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distance is that it is based on integrating over all paths through the graph. This makes the diffusion
distance more robust to short-circuiting than, e.g., the geodesic distance that is employed in Isomap.

In the diffusion maps framework, a graph of the data is constructed first. The weights of the edges
in the graph are computed using the Gaussian kernel function, leading to a matrix W with entries

wij = e−
‖xi−xj‖

2

2σ2 , (8)

where σ indicates the variance of the Gaussian. Subsequently, normalization of the matrix W is per-
formed in such a way that its rows add up to 1. In this way, a matrix P(1) is formed with entries

p
(1)
ij =

wij∑
k wik

. (9)

Since diffusion maps originate from dynamical systems theory, the resulting matrix P(1) is considered
a Markov matrix that defines the forward transition probability matrix of a dynamical process. Hence,
the matrix P(1) represents the probability of a transition from one datapoint to another datapoint in a

single timestep. The forward probability matrix for t timesteps P(t) is thus given by
(

P(1)
)t

. Using the

random walk forward probabilities p(t)
ij , the diffusion distance is defined by

D(t)(xi, xj) =

√√√√√∑
k

(
p
(t)
ik − p

(t)
jk

)2

ψ(xk)(0)
. (10)

In the equation, ψ(xi)(0) is a term that attributes more weight to parts of the graph with high density.
It is defined by ψ(xi)(0) = miP

j mj
, where mi is the degree of node xi defined by mi =

∑
j pij . From

Equation 10, it can be observed that pairs of datapoints with a high forward transition probability have
a small diffusion distance. Since the diffusion distance is based on integrating over all paths through the
graph, it is more robust to short-circuiting than the geodesic distance that is employed in Isomap. In the
low-dimensional representation of the data Y, diffusion maps attempt to retain the diffusion distances.
Using spectral theory on the random walk, it has been shown (see, e.g., [76]) that the low-dimensional
representation Y that retains the diffusion distances D(t)(xi, xj) as good as possible (under a squared
error criterion) is formed by the d nontrivial principal eigenvectors of the eigenproblem

P(t)v = λv. (11)

Because the graph is fully connected, the largest eigenvalue is trivial (viz. λ1 = 1), and its eigenvector v1

is thus discarded. The low-dimensional representation Y is given by the next d principal eigenvectors. In
the low-dimensional representation, the eigenvectors are normalized by their corresponding eigenvalues.
Hence, the low-dimensional data representation is given by

Y = {λ2v2, λ3v3, . . . , λd+1vd+1}. (12)

Diffusion maps have been successfully applied to, e.g., shape matching [101] and gene expression
analysis [145].

3.2 Sparse Spectral Techniques

In the previous subsection, we discussed five techniques that construct a low-dimensional representation
of the high-dimensional data by performing an eigendecomposition of a full matrix. In contrast, the four
techniques discussed in this subsection solve a sparse (generalized) eigenproblem. All presented sparse
spectral techniques only focus on retaining local structure of the data. We discuss the sparse spectral
dimensionality reduction techniques (1) LLE, (2) Laplacian Eigenmaps, (3) Hessian LLE, and (4) LTSA
separately in subsection 3.2.1 to 3.2.4.
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3.2.1 LLE

Local Linear Embedding (LLE) [105] is a technique that is similar to Isomap (and MVU) in that it con-
structs a graph representation of the datapoints. In contrast to Isomap, it attempts to preserve solely local
properties of the data. As a result, LLE is less sensitive to short-circuiting than Isomap, because only a
small number of local properties are affected if short-circuiting occurs. Furthermore, the preservation of
local properties allows for successful embedding of non-convex manifolds. In LLE, the local properties
of the data manifold are constructed by writing the high-dimensional datapoints as a linear combination
of their nearest neighbors. In the low-dimensional representation of the data, LLE attempts to retain the
reconstruction weights in the linear combinations as good as possible.

LLE describes the local properties of the manifold around a datapoint xi by writing the datapoint
as a linear combination wi (the so-called reconstruction weights) of its k nearest neighbors xij . Hence,
LLE fits a hyperplane through the datapoint xi and its nearest neighbors, thereby assuming that the
manifold is locally linear. The local linearity assumption implies that the reconstruction weights wi of
the datapoints xi are invariant to translation, rotation, and rescaling. Because of the invariance to these
transformations, any linear mapping of the hyperplane to a space of lower dimensionality preserves the
reconstruction weights in the space of lower dimensionality. In other words, if the low-dimensional
data representation preserves the local geometry of the manifold, the reconstruction weights wi that
reconstruct datapoint xi from its neighbors in the high-dimensional data representation also reconstruct
datapoint yi from its neighbors in the low-dimensional data representation. As a consequence, finding
the d-dimensional data representation Y amounts to minimizing the cost function

φ(Y) =
∑

i

‖yi −
k∑

j=1

wijyij‖
2 subject to ‖y(k)‖2 = 1 for ∀k, (13)

where y(k) represents the kth column of the solution matrix Y. The constraint on the covariance of the
columns of Y is required to exclude the trivial solution Y = 0. Roweis and Saul [105] showed3 that
the coordinates of the low-dimensional representations yi that minimize this cost function are found
by computing the eigenvectors corresponding to the smallest d nonzero eigenvalues of the inproduct
(I − W)T (I − W), where W is a sparse n × n matrix whose entries are set to 0 if i and j are not
connected in the neighborhood graph, and equal to the corresponding reconstruction weight otherwise.
In this formula, I is the n× n identity matrix.

The popularity of LLE has led to the proposal of linear variants of the algorithm [58, 74], and to
successful applications to, e.g., superresolution [27] and sound source localization [43]. However, there
also exist experimental studies that report weak performance of LLE. In [86], LLE was reported to fail in
the visualization of even simple synthetic biomedical datasets. In [68], it is claimed that LLE performs
worse than Isomap in the derivation of perceptual-motor actions. A possible explanation lies in the
difficulties that LLE has when confronted with manifolds that contain holes [105]. In addition, LLE
tends to collapse large portions of the data very close together in the low-dimensional space, because
the covariance constraint on the solution is too simple [129]. Also, the covariance constraint may give
rise to undesired rescalings of the data manifold in the embedding [52].

3.2.2 Laplacian Eigenmaps

Similar to LLE, Laplacian Eigenmaps find a low-dimensional data representation by preserving local
properties of the manifold [10]. In Laplacian Eigenmaps, the local properties are based on the pairwise
distances between near neighbors. Laplacian Eigenmaps compute a low-dimensional representation of
the data in which the distances between a datapoint and its k nearest neighbors are minimized. This
is done in a weighted manner, i.e., the distance in the low-dimensional data representation between a
datapoint and its first nearest neighbor contributes more to the cost function than the distance between
the datapoint and its second nearest neighbor. Using spectral graph theory, the minimization of the cost
function is defined as an eigenproblem.

3φ(Y) = (Y − WY)2 = YT (I − W)T (I − W)Y is the function that has to be minimized. Hence, the eigenvectors of
(I−W)T (I−W) corresponding to the smallest nonzero eigenvalues form the solution that minimizes φ(Y).
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The Laplacian Eigenmaps algorithm first constructs a neighborhood graph G in which every data-
point xi is connected to its k nearest neighbors. For all points xi and xj in graph G that are connected
by an edge, the weight of the edge is computed using the Gaussian kernel function (see Equation 8),
leading to a sparse adjacency matrix W. In the computation of the low-dimensional representations yi,
the cost function that is minimized is given by

φ(Y) =
∑
ij

‖yi − yj‖2wij . (14)

In the cost function, large weights wij correspond to small distances between the high-dimensional
datapoints xi and xj . Hence, the difference between their low-dimensional representations yi and yj

highly contributes to the cost function. As a consequence, nearby points in the high-dimensional space
are put as close together as possible in the low-dimensional representation.

The computation of the degree matrix M and the graph Laplacian L of the graph W allows for
formulating the minimization problem in Equation 14 as an eigenproblem [4]. The degree matrix M of
W is a diagonal matrix, of which the entries are the row sums of W (i.e., mii =

∑
j wij). The graph

Laplacian L is computed by L = M−W. It can be shown that the following holds4

φ(Y) =
∑
ij

‖yi − yj‖2wij = 2YT LY. (15)

Hence, minimizing φ(Y) is proportional to minimizing YT LY subject to YT MY = In, a covariance
constraint that is similar to that of LLE. The low-dimensional data representation Y can thus be found
by solving the generalized eigenvalue problem

Lv = λMv (16)

for the d smallest nonzero eigenvalues. The d eigenvectors vi corresponding to the smallest nonzero
eigenvalues form the low-dimensional data representation Y.

Laplacian Eigenmaps suffer from many of the same weaknesses as LLE, such as the presence of a
trivial solution that is prevented from being selected by a covariance constraint that can easily be cheated
on. Despite these weaknesses, Laplacian Eigenmaps (and its variants) have been successfully applied
to, e.g., face recognition [58] and the analysis of fMRI data [25]. In addition, variants of Laplacian
Eigenmaps may be applied to supervised or semi-supervised learning problems [33, 11]. A linear variant
of Laplacian Eigenmaps is presented in [59]. In spectral clustering, clustering is performed based on
the sign of the coordinates obtained from Laplacian Eigenmaps [93, 116, 140].

3.2.3 Hessian LLE

Hessian LLE (HLLE) [42] is a variant of LLE that minimizes the ‘curviness’ of the high-dimensional
manifold when embedding it into a low-dimensional space, under the constraint that the low-dimensional
data representation is locally isometric. This is done by an eigenanalysis of a matrixH that describes the
curviness of the manifold around the datapoints. The curviness of the manifold is measured by means
of the local Hessian at every datapoint. The local Hessian is represented in the local tangent space at the
datapoint, in order to obtain a representation of the local Hessian that is invariant to differences in the
positions of the datapoints. It can be shown5 that the coordinates of the low-dimensional representation
can be found by performing an eigenanalysis of an estimator H of the manifold Hessian.

Hessian LLE starts with identifying the k nearest neighbors for each datapoint xi using Euclidean
distance. In the neighborhood, local linearity of the manifold is assumed. Hence, a basis for the local
tangent space at point xi can be found by applying PCA on its k nearest neighbors xij . In other words,
for every datapoint xi, a basis for the local tangent space at point xi is determined by computing the d
principal eigenvectors M = {m1,m2, . . . ,md} of the covariance matrix cov(xi·). Note that the above

4Note that φ(Y) =
P

ij‖yi − yj‖
2wij =

P
ij(‖yi‖

2 + ‖yj‖
2 − 2yiy

T
j )wij =

P
i‖yi‖

2mii +
P

j‖yj‖
2mjj −

2
P

ij yiy
T
j wij = 2YT MY− 2YT WY = 2YT LY

5The derivation can be found in [42].
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requires that k ≥ d. Subsequently, an estimator for the Hessian of the manifold at point xi in local
tangent space coordinates is computed. In order to do this, a matrix Zi is formed that contains (in the
columns) all cross products of M up to the dth order (including a column with ones). The matrix Zi

is orthonormalized by applying Gram-Schmidt orthonormalization [2]. The estimation of the tangent
Hessian Hi is now given by the transpose of the last d(d+1)

2 columns of the matrix Zi. Using the Hessian
estimators in local tangent coordinates, a matrix H is constructed with entries

Hlm =
∑

i

∑
j

((Hi)jl × (Hi)jm) . (17)

The matrix H represents information on the curviness of the high-dimensional data manifold. An eige-
nanalysis of H is performed in order to find the low-dimensional data representation that minimizes the
curviness of the manifold. The eigenvectors corresponding to the d smallest nonzero eigenvalues of H
are selected and form the matrix Y, which contains the low-dimensional representation of the data.

Hessian LLE shares many characteristics with Laplacian Eigenmaps: it simply replaces the manifold
Laplacian by the manifold Hessian. As a result, Hessian LLE suffers from many of the same weaknesses
as Laplacian Eigenmaps and LLE. A successful application of Hessian LLE to sensor localization has
been presented by [97].

3.2.4 LTSA

Similar to Hessian LLE, Local Tangent Space Analysis (LTSA) is a technique that describes local prop-
erties of the high-dimensional data using the local tangent space of each datapoint [149]. LTSA is based
on the observation that, if local linearity of the manifold is assumed, there exists a linear mapping from
a high-dimensional datapoint to its local tangent space, and that there exists a linear mapping from the
corresponding low-dimensional datapoint to the same local tangent space [149]. LTSA attempts to align
these linear mappings in such a way, that they construct the local tangent space of the manifold from the
low-dimensional representation. In other words, LTSA simultaneously searches for the coordinates of
the low-dimensional data representations, and for the linear mappings of the low-dimensional datapoints
to the local tangent space of the high-dimensional data.

Similar to Hessian LLE, LTSA starts with computing bases for the local tangent spaces at the data-
points xi. This is done by applying PCA on the k datapoints xij that are neighbors of datapoint xi. This
results in a mapping Mi from the neighborhood of xi to the local tangent space Θi. A property of the
local tangent space Θi is that there exists a linear mapping Li from the local tangent space coordinates
θij to the low-dimensional representations yij . Using this property of the local tangent space, LTSA
performs the following minimization

min
Yi,Li

∑
i

‖YiJk − LiΘi‖2, (18)

where Jk is the centering matrix (i.e., the matrix that performs the transformation in Equation 5) of size
k [115]. In [149], it is shown that the solution Y of the minimization is formed by the eigenvectors of
an alignment matrix B, that correspond to the d smallest nonzero eigenvalues of B. The entries of the
alignment matrix B are obtained by iterative summation (for all matrices Vi and starting from bij = 0
for ∀ij)

BNiNi = BNi−1Ni−1 + Jk

(
I− ViVT

i

)
Jk, (19)

where Ni represents the set of indices of the nearest neighbors of datapoint xi. Subsequently, the low-
dimensional representation Y is obtained by computation of the eigenvectors corresponding to the d
smallest nonzero eigenvectors of the symmetric matrix 1

2(B + BT ).
Like the other sparse spectral dimensionality reduction techniques, LTSA may be hampered by

the presence of a trivial solution in the cost function. In [123], a successful application of LTSA to
microarray data is reported. A linear variant of LTSA is proposed in [147].
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4 Non-convex Techniques for Dimensionality Reduction

In the previous section, we discussed techniques that construct a low-dimensional data representation by
optimizing a convex objective function by means of an eigendecomposition. In this section, we discuss
four techniques that optimize a non-convex objective function. Specifically, we discuss a non-convex
techniques for multidimensional scaling that forms an alternative to classical scaling called Sammon
mapping (subsection 4.1), a technique based on training multilayer neural networks (subsection 4.2),
and two techniques that construct a mixture of local linear models and perform a global alignment of
these linear models (subsection 4.3 and 4.4).

4.1 Sammon Mapping

In Section 3.1.1, we discussed classical scaling, a convex technique for multidimensional scaling [126],
and noted that the main weakness of this technique is that it mainly focuses on retaining large pairwise
distances, and not on retaining the small pairwise distances, which are much more important to the
geometry of the data. Several multidimensional scaling variants have been proposed that aim to address
this weakness [3, 38, 81, 108, 62, 92, 129]. In this subsection, we discuss one such MDS variant called
Sammon mapping [108].

Sammon mapping adapts the classical scaling cost function (see Equation 2) by weighting the con-
tribution of each pair (i, j) to the cost function by the inverse of their pairwise distance in the high-
dimensional space dij . In this way, the cost function assigns roughly equal weight to retaining each
of the pairwise distances, and thus retains the local structure of the data better than classical scaling.
Mathematically, the Sammon cost function is given by

φ(Y) =
1∑
ij dij

∑
i6=j

(dij − ‖yi − yj‖)2

dij
, (20)

where dij represents the pairwise Euclidean distance between the high-dimensional datapoints xi and xj ,
and the constant in front is added in order to simplify the gradient of the cost function. The minimization
of the Sammon cost function is generally performed using a pseudo-Newton method [34]. Sammon
mapping is mainly used for visualization purposes [88].

The main weakness of Sammon mapping is that it assigns a much higher weight to retaining a
distance of, say, 10−5 than to retaining a distance of, say, 10−4. Successful applications of Sammon
mapping have been reported on, e.g., gene data [44] and and geospatial data [119].

4.2 Multilayer Autoencoders

Multilayer autoencoders are feed-forward neural networks with an odd number of hidden layers [39,
63] and shared weights between the top and bottom layers (although asymmetric network structures
may be employed as well). The middle hidden layer has d nodes, and the input and the output layer
have D nodes. An example of an autoencoder is shown schematically in Figure 2. The network is
trained to minimize the mean squared error between the input and the output of the network (ideally,
the input and the output are equal). Training the neural network on the datapoints xi leads to a network
in which the middle hidden layer gives a d-dimensional representation of the datapoints that preserves
as much structure in tha dataset X as possible. The low-dimensional representations yi can be obtained
by extracting the node values in the middle hidden layer, when datapoint xi is used as input. In order to
allow the autoencoder to learn a nonlinear mapping between the high-dimensional and low-dimensional
data representation, sigmoid activation functions are generally used (except in the middle layer, where
a linear activation function is usually employed).

Multilayer autoencoders usually have a high number of connections. Therefore, backpropagation
approaches converge slowly and are likely to get stuck in local minima. In [61], this drawback is over-
come using a learning procedure that consists of three main stages. First, the recognition layers of the
network (i.e., the layers from X to Y) are trained one-by-one using Restricted Boltzmann Machines6

6As an alternative, it is possible to pretrain each layer using a small denoising autoencoder [134].
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(RBMs). An RBM is a Markov Random Field with a bipartite graph structure of visible and hidden
nodes. Typically, the nodes are binary stochastic random variables (i.e., they obey a Bernoulli distri-
bution) but for continuous data the binary nodes may be replaced by mean-field logistic or exponential
family nodes [142]. RBMs can be trained efficiently using an unsupervised learning procedure that
minimizes the so-called contrastive divergence [60]. Second, the reconstruction layers of the network
(i.e., the layers from Y to X′) are formed by the inverse of the trained recognition layers. In other words,
the autoencoder is unrolled. Third, the unrolled autoencoder is finetuned in a supervised manner using
backpropagation. The three-stage training procedure overcomes the susceptibility to local minima of
standard backpropagation approaches [78].

The main weakness of autoencoders is that their training may be tedious, although this weakness is
(partially) addressed by recent advances in deep learning. Autoencoders have succesfully been applied
to problems such as missing data imputation [1] and HIV analysis [18].

Decoder                                       

 Encoder

Input data X

Output data X'

w1

w2

w3

w4

(w1)
T

(w2)
T

(w4)
T

(w3)
T

Low-dimensional
representation Y

Figure 2: Schematic structure of an autoencoder.

4.3 LLC

Locally Linear Coordination (LLC) [120] computes a number of locally linear models and subsequently
performs a global alignment of the linear models. This process consists of two steps: (1) computing a
mixture of local linear models on the data by means of an EM-algorithm and (2) aligning the local linear
models in order to obtain the low-dimensional data representation using a variant of LLE.

LLC first constructs a mixture of m factor analyzers (MoFA)7 using the EM algorithm [40, 50, 70].
Alternatively, a mixture of probabilistic PCA model (MoPPCA) could be employed [125]. The local
linear models in the mixture are used to construct m data representations zij and their corresponding
responsibilities rij (where j ∈ {1, . . . ,m}) for every datapoint xi. The responsibilities rij describe to
what extent datapoint xi corresponds to the model j; they satisfy

∑
j rij = 1. Using the local models

and the corresponding responsibilities, responsibility-weighted data representations uij = rijzij are
computed. The responsibility-weighted data representations uij are stored in a n ×mD block matrix
U. The alignment of the local models is performed based on U and on a matrix M that is given by
M = (In − W)T (In − W). Herein, the matrix W contains the reconstruction weights computed by
LLE (see 3.2.1), and In denotes the n × n identity matrix. LLC aligns the local models by solving the
generalized eigenproblem

Av = λBv, (21)

for the d smallest nonzero eigenvalues8. In the equation, A is the inproduct of MT U and B is the inprod-
uct of U. The d eigenvectors vi form a matrix L that defines a linear mapping from the responsibility-

7Note that the mixture of factor analyzers (and the mixture of probabilistic PCA models) is a mixture of Gaussians model
with a restriction on the covariance of the Gaussians.

8The derivation of this eigenproblem can be found in [120].
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weighted data representation U to the underlying low-dimensional data representation Y. The low-
dimensional data representation is thus obtained by computing Y = UL.

The main weakness of LLC is that the fitting of the mixture of factor analyzers is susceptible to
the presence of local maxima in the log-likelihood function. LLC has been successfully applied to face
images of a single person with variable pose and expression, and to handwritten digits [120].

4.4 Manifold Charting

Similar to LLC, manifold charting constructs a low-dimensional data representation by aligning a MoFA
or a MoPPCA model [23]. In contrast to LLC, manifold charting does not minimize a cost function that
corresponds to another dimensionality reduction technique (such as the LLE cost function). Manifold
charting minimizes a convex cost function that measures the amount of disagreement between the linear
models on the global coordinates of the datapoints. The minimization of this cost function can be
performed by solving a generalized eigenproblem.

Manifold charting first performs the EM algorithm to learn a mixture of factor analyzers, in or-
der to obtain m low-dimensional data representations zij and corresponding responsibilities rij (where
j ∈ {1, . . . ,m}) for all datapoints xi. Manifold charting finds a linear mapping M from the data repre-
sentations zij to the global coordinates yi that minimizes the cost function

φ(Y) =
n∑

i=1

m∑
j=1

rij‖yi − yij‖2, (22)

where yi =
∑m

k=1 rikyik, and yij = zijM. The intuition behind the cost function is that whenever there
are two linear models in which a datapoint has a high responsibility, these linear models should agree
on the final coordinate of the datapoint. The cost function can be rewritten in the form

φ(Y) =
n∑

i=1

m∑
j=1

m∑
k=1

rijrik‖yij − yik‖2, (23)

which allows the cost function to be rewritten in the form of a Rayleigh quotient. The Rayleigh quotient
can be constructed by the definition of a block-diagonal matrix D with m blocks by

D =

D1 . . . 0
...

. . .
...

0 . . . Dm

 , (24)

where Dj is the sum of the weighted covariances of the data representations zij . Hence, Dj is given by

Dj =
n∑

i=1

rij cov(
[
Zj 1

]
). (25)

In Equation 25, the 1-column is added to the data representation Zj in order to facilitate translations in
the construction of yi from the data representations zij . Using the definition of the matrix D and the
n ×mD block-diagonal matrix U with entries uij = rij

[
zij 1

]
, the manifold charting cost function

can be rewritten as
φ(Y) = LT (D− UT U)L, (26)

where L represents the linear mapping on the matrix Z that can be used to compute the final low-
dimensional data representation Y. The linear mapping L can thus be computed by solving the general-
ized eigenproblem

(D− UT U)v = λUT Uv, (27)

for the d smallest nonzero eigenvalues. The d eigenvectors vi form the columns of the linear combination
L from

[
U 1

]
to Y.

13



5 Characterization of the Techniques

In Section 3 and 4, we provided an overview of techniques for dimensionality reduction. This section
lists the techniques by three theoretical characterizations. First, relations between the dimensionality
reduction techniques are identified (subsection 5.1). Second, we list and discuss a number of gen-
eral properties of the techniques such as the nature of the objective function that is optimized and the
computational complexity of the technique (subsection 5.2). Third, the out-of-sample extension of the
techniques is discussed (subsection 5.3).

5.1 Relations

Many of the techniques discussed in Section 3 and 4 are highly interrelated, and in certain special cases
even equivalent. In the previous sections, we already mentioned some of these relations, but in this
subsection, we discuss the relations between the techniques in more detail. Specifically, we discuss
three types of relations between the techniques.

First, traditional PCA is identical to performing classical scaling and to performing Kernel PCA with
a linear kernel, due to the relation between the eigenvectors of the covariance matrix and the double-
centered squared Euclidean distance matrix [143], which is in turn equal to the Gram matrix. Autoen-
coders in which only linear activation functions are employed are very similar to PCA as well [75].

Second, performing classical scaling on a pairwise geodesic distance matrix is identical to perform-
ing Isomap. Similarly, performing Isomap with the number of nearest neighbors k set to n−1 is identical
to performing classical scaling (and thus also to performing PCA and to performing Kernel PCA with a
linear kernel). Diffusion maps are also very similar to classical scaling, however, they attempt to retain
a different type of pairwise distances (the so-called diffusion distances). The main discerning property
of diffusion maps its pairwise distance measure between the high-dimensional datapoints is based on
integrating over all paths through the graph defined on the data.

Third, the spectral techniques Kernel PCA, Isomap, LLE, and Laplacian Eigenmaps can all be
viewed upon as special cases of the more general problem of learning eigenfunctions [14, 57]. As a
result, Isomap, LLE, and Laplacian Eigenmaps9 can be considered as special cases of Kernel PCA that
use a specific kernel function κ. For instance, this relation is visible in the out-of-sample extensions
of Isomap, LLE, and Laplacian Eigenmaps [17]. The out-of-sample extension for these techniques is
performed by means of a so-called Nyström approximation [6, 99], which is known to be equivalent to
the Kernel PCA projection (see 5.3 for more details). Laplacian Eigenmaps and Hessian LLE are also
intimately related: they only differ in the type of differential operator they define on the data manifold.

Diffusion maps in which t = 1 are fairly similar to Kernel PCA with the Gaussian kernel function.
There are two main differences between the two: (1) no centering of the Gram matrix is performed in
diffusion maps (although centering is not generally considered to be essential in Kernel PCA [115]) and
(2) diffusion maps do not employ the principal eigenvector of the kernel matrix, whereas Kernel PCA
does. MVU can also be viewed upon as a special case of Kernel PCA, in which the the solution of the
SDP is the kernel function. In turn, Isomap can be viewed upon as a technique that finds an approximate
solution to the MVU problem [144]. Evaluation of the dual MVU problem has also shown that LLE and
Laplacian Eigenmaps show great resemblance to MVU [144].

As a consequence of the relations between the techniques, our empirical comparative evaluation
in Section 6 does not include (1) classical scaling, (2) Kernel PCA using a linear kernel, and (3) au-
toencoders with linear activation functions, because they are similar to PCA. Furthermore, we do not
evaluate Kernel PCA using a Gaussian kernel in the experiments, because of its resemblance to diffusion
maps; instead we use a polynomial kernel.

5.2 General Properties

In Table 1, the thirteen dimensionality reduction techniques are listed by four general properties: (1)
the parametric nature of the mapping between the high-dimensional and the low-dimensional space,

9The same also holds for Hessian LLE and LTSA, but up to our knowledge, the kernel functions for these techniques have
never been derived.
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Technique Parametric Parameters Computational Memory
PCA yes none O(D3) O(D2)
Class. scaling no none O(n3) O(n2)
Isomap no k O(n3) O(n2)
Kernel PCA no κ(·, ·) O(n3) O(n2)
MVU no k O((nk)3) O((nk)3)
Diffusion maps no σ, t O(n3) O(n2)
LLE no k O(pn2) O(pn2)
Laplacian Eigenmaps no k, σ O(pn2) O(pn2)
Hessian LLE no k O(pn2) O(pn2)
LTSA no k O(pn2) O(pn2)
Sammon mapping no none O(in2) O(n2)
Autoencoders yes net size O(inw) O(w)
LLC yes m, k O(imd3) O(nmd)
Manifold charting yes m O(imd3) O(nmd)

Table 1: Properties of techniques for dimensionality reduction.

(2) the main free parameters that have to be optimized, (3) the computational complexity of the main
computational part of the technique, and (4) the memory complexity of the technique. We discuss the
four general properties below.

For property 1, Table 1 shows that most techniques for dimensionality reduction are non-parametric.
This means that the technique does not specify a direct mapping from the high-dimensional to the low-
dimensional space (or vice versa). The non-parametric nature of most techniques is a disadvantage for
two main reasons: (1) it is not possible to generalize to held-out or new test data without performing
the dimensionality reduction technique again and (2) it is not possible to obtain insight in how much
information of the high-dimensional data was retained in the low-dimensional space by reconstructing
the original data from the low-dimensional data representation and measuring the error between the
reconstructed and true data.

For property 2, Table 1 shows that the objective functions of most nonlinear techniques for dimen-
sionality reduction all have free parameters that need to be optimized. By free parameters, we mean
parameters that directly influence the cost function that is optimized. The reader should note that non-
convex techniques for dimensionality reduction have additional free parameters, such as the learning
rate and the permitted maximum number of iterations. Moreover, LLE uses a regularization parameter
in the computation of the reconstruction weights. The presence of free parameters has both advantages
and disadvantages. The main advantage of the presence of free parameters is that they provide more
flexibility to the technique, whereas their main disadvantage is that they need to be tuned to optimize
the performance of the dimensionality reduction technique.
For properties 3 and 4, Table 1 provides insight into the computational and memory complexities of the
computationally most expensive algorithmic components of the techniques. The computational com-
plexity of a dimensionality reduction technique is of importance to its practical applicability. If the
memory or computational resources needed are too large, application becomes infeasible. The com-
putational complexity of a dimensionality reduction technique is determined by: (1) properties of the
dataset such as the number of datapoints n and their dimensionality D, and (2) by parameters of the
techniques, such as the target dimensionality d, the number of nearest neighbors k (for techniques based
on neighborhood graphs) and the number of iterations i (for iterative techniques). In Table 1, p denotes
the ratio of nonzero elements in a sparse matrix to the total number of elements, m indicates the number
of local models in a mixture of factor analyzers, and w is the number of weights in a neural network.
Below, we discuss the computational complexity and the memory complexity of each of the entries in
the table.

The computationally most demanding part of PCA is the eigenanalysis of the D × D covariance
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matrix10, which is performed using a power method in O(D3). The corresponding memory complexity
of PCA is O(D2). In datasets in which n < D, the computational and memory complexity of PCA can
be reduced to O(n3) and O(n2), respectively (see Section 3.1.1). Classical scaling, Isomap, diffusion
maps, and Kernel PCA perform an eigenanalysis of an n × n matrix using a power method in O(n3).
Because these full spectral techniques store a full n× n kernel matrix, the memory complexity of these
techniques is O(n2).

In addition to the eigendecomposition of Kernel PCA, MVU solves a semidefinite program (SDP)
with nk constraints. Both the computational and the memory complexity of solving an SDP are cube in
the number of constraints [21]. Since there are nk constraints, the computational and memory complex-
ity of the main part of MVU is O((nk)3). Training an autoencoder using RBM training or backprop-
agation has a computational complexity of O(inw). The training of autoencoders may converge very
slowly, especially in cases where the input and target dimensionality are very high (since this yields a
high number of weights in the network). The memory complexity of autoencoders is O(w).

The main computational part of LLC and manifold charting is the computation of the MoFA or MoP-
PCA model, which has computational complexity O(imd3). The corresponding memory complexity
is O(nmd). Sammon mapping has a computational complexity of O(in2). The corresponding mem-
ory complexity is O(n2), although the memory complexity may be reduced by computing the pairwise
distances on-the-fly.

Similar to, e.g., Kernel PCA, sparse spectral techniques perform an eigenanalysis of an n × n
matrix. However, for these techniques the n× n matrix is sparse, which is beneficial, because it lowers
the computational complexity of the eigenanalysis. Eigenanalysis of a sparse matrix (using Arnoldi
methods [5] or Jacobi-Davidson methods [48]) has computational complexity O(pn2), where p is the
ratio of nonzero elements in the sparse matrix to the total number of elements. The memory complexity
is O(pn2) as well.

From the discussion of the four general properties of the techniques for dimensionality reduction
above, we make four observations: (1) most nonlinear techniques for dimensionality reduction do not
provide a parametric mapping between the high-dimensional and the low-dimensional space, (2) all
nonlinear techniques require the optimization of one or more free parameters, (3) whenD < n (which is
true in most cases), nonlinear techniques have computational disadvantages compared to PCA, and (4) a
number of nonlinear techniques suffer from a memory complexity that is square or cube with the number
of datapoints n. From these observations, it is clear that nonlinear techniques impose considerable
demands on computational resources, as compared to PCA. Attempts to reduce the computational and/or
memory complexities of nonlinear techniques have been proposed for, e.g., Isomap [37, 79], MVU [136,
139], and Kernel PCA [124].

5.3 Out-of-sample Extension

An important requirement for dimensionality reduction techniques is the ability to embed new high-
dimensional datapoints into an existing low-dimensional data representation. So-called out-of-sample
extensions have been developed for a number of techniques to allow for the embedding of such new
datapoints, and can be subdivided into parametric and nonparametric out-of-sample extensions.

In a parametric out-of-sample extension, the dimensionality reduction technique provides all param-
eters that are necessary in order to transform new data from the high-dimensional to the low-dimensional
space (see Table 1 for an overview of parametric dimensionality reduction techniques). In linear tech-
niques such as PCA, this transformation is defined by the linear mapping M that was applied to the orig-
inal data. For autoencoders, the trained network defines the transformation from the high-dimensional
to the low-dimensional data representation.

For the other nonlinear dimensionality reduction techniques, a parametric out-of-sample extension
is not available, and therefore, a nonparametric out-of-sample extension is required. Nonparametric
out-of-sample extensions perform an estimation of the transformation from the high-dimensional to the
low-dimensional space. For instance, the out-of-sample extension of Kernel PCA [112] employs the

10In cases in which n � D, the main computational part of PCA may be the computation of the covariance matrix. We
ignore this for now.
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so-called Nyström approximation [99], which approximates the eigenvectors of a large n × n matrix
based on the eigendecomposition of an m ×m submatrix of the large matrix (with m < n). A similar
out-of-sample extension for Isomap, LLE, and Laplacian Eigenmaps has been presented in [17], in
which the techniques are redefined in the Kernel PCA framework and the Nyström approximation is
employed. Similar nonparametric out-of-sample extensions for Isomap are proposed in [31, 37]. For
MVU, an approximate out-of-sample extension has been proposed that is based on computing a linear
transformation from a set of landmark points to the complete dataset [136]. An alternative out-of-
sample extension for MVU finds this linear transformation by computing the eigenvectors corresponding
to the smallest eigenvalues of the graph Laplacian [139]. A third out-of-sample extension for MVU
approximates the kernel eigenfunction using Gaussian basis functions [30].

A nonparametric out-of-sample extension that can be applied to all nonlinear dimensionality reduc-
tion techniques is proposed in [85]. The technique finds the nearest neighbor of the new datapoint in the
high-dimensional representation, and computes the linear mapping from the nearest neighbor to its cor-
responding low-dimensional representation. The low-dimensional representation of the new datapoint
is found by applying the same linear mapping to this datapoint.

From the description above, we may observe that linear and nonlinear techniques for dimensionality
reduction are quite similar in that they allow the embedding of new datapoints. However, for a significant
number of nonlinear techniques, only nonparametric out-of-sample extensions are available, which leads
to estimation errors in the embedding of new datapoints.

6 Experiments

In this section, a systematic empirical comparison of the performance of the techniques for dimen-
sionality reduction is performed. We perform the comparison by measuring generalization errors in
classification tasks on two types of datasets: (1) artificial datasets and (2) natural datasets. In addi-
tion to generalization errors, we measure the ‘trustworthiness’ and ‘continuity’ of the low-dimensional
embeddings as proposed in [132].

The setup of our experiments is described in subsection 6.1. In subsection 6.2, the results of our ex-
periments on five artificial datasets are presented. Subsection 6.3 presents the results of the experiments
on five natural datasets.

6.1 Experimental Setup

In our experiments on both the artificial and the natural datasets, we apply the thirteen techniques for
dimensionality reduction on the high-dimensional representation of the data. Subsequently, we assess
the quality of the resulting low-dimensional data representations by evaluating to what extent the lo-
cal structure of the data is retained. The evaluation is performed in two ways: (1) by measuring the
generalization errors of 1-nearest neighbor classifiers that are trained on the low-dimensional data rep-
resentation (as is done, e.g., in [109]) and (2) by measuring the ‘trustworthiness’ and the ‘continuity’ of
the low-dimensional embeddings [132]. The trustworthiness measures the proportion of points that are
too close together in the low-dimensional space. The trustworthiness measure is defined as

T (k) = 1− 2
nk(2n− 3k − 1)

n∑
i=1

∑
j∈U

(k)
i

(r(i, j)− k) , (28)

where r(i, j) represents the rank of the low-dimensional datapoint j according to the pairwise distances
between the low-dimensional datapoints. The variable U (k)

i indicates the set of points that are among the
k nearest neighbors in the low-dimensional space but not in the high-dimensional space. The continuity
measure is defined as

C(k) = 1− 2
nk(2n− 3k − 1)

n∑
i=1

∑
j∈V

(k)
i

(r̂(i, j)− k) , (29)
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(a) True underlying manifold. (b) Reconstructed manifold up to a non-
linear warping.

Figure 3: Two low-dimensional data representations.

where r̂(i, j) represents the rank of the high-dimensional datapoint j according to the pairwise distances
between the the high-dimensional datapoints. The variable V (k)

i indicates the set of points that are
among the k nearest neighbors in the high-dimensional space but not in the low-dimensional space.

The generalization errors of the 1-nearest neighbor classifiers, the trustworthiness, and the continuity
evaluate to what extent the local structure of the data is retained (the 1-nearest neighbor classifier does
so because of its high variance). We opt for an evaluation of the local structure of the data, because for
successful visualization or classification of data, its local structure needs to be retained. An evaluation
of the quality based on generalization errors, trustworthiness, and continuity has an important advantage
over measuring reconstruction errors, because a high reconstruction error does not necessarily imply that
the dimensionality reduction technique performed poorly. For instance, if a dimensionality reduction
technique recovers the true underlying manifold in Figure 3(a) up to a nonlinear warping, such as in
Figure 3(b), this leads to a high reconstruction error, whereas the local structure of the two manifolds is
nearly identical (as the circles indicate). Moreover, for real-world datasets the true underlying manifold
of the data is usually unknown, as a result of which reconstruction errors cannot be computed for the
natural datasets.

For all dimensionality reduction techniques except for Isomap, MVU, and sparse spectral techniques
(the so-called manifold learners), we performed experiments without out-of-sample extension, because
our main interest is in the performance of the dimensionality reduction techniques, and not in the quality
of the out-of-sample extension. In the experiments with Isomap, MVU, and sparse spectral techniques,
we employ out-of-sample extensions (see subsection 5.3) in order to embed datapoints that are not
connected to the largest component of the neighborhood graph which is constructed by these techniques.
The use of the out-of-sample extension of the manifold learners is necessary because the traditional
implementations of Isomap, MVU, and sparse spectral techniques can only embed the datapoints that
comprise the largest component of the neighborhood graph.

The parameter settings employed in our experiments are listed in Table 2. Most parameters were
optimized using an exhaustive grid search within a reasonable range. The range of parameters for which
we performed experiments is shown in Table 2. For one parameter (the bandwidth σ in diffusion maps
and Laplacian Eigenmaps), we employed fixed values in order to restrict the computational requirements
of our experiments. The value of k in the k-nearest neighbor classifiers was set to 1. We determined the
target dimensionality in the experiments by means of the maximum likelihood intrinsic dimensionality
estimator [84]. Note that for Hessian LLE and LTSA, the dimensionality of the actual low-dimensional
data representation cannot be higher than the number of nearest neighbors that was used to construct
the neighborhood graph. The generalization errors of the 1-nearest neighbor classifiers were measured
using leave-one-out validation.

6.1.1 Five Artificial Datasets

We performed experiments on five artificial datasets. The datasets were specifically selected to inves-
tigate how the dimensionality reduction techniques deal with: (i) data that lies on a low-dimensional
manifold that is isometric to Euclidean space, (ii) data lying on a low-dimensional manifold that is
not isometric to Euclidean space, (iii) data that lies on or near a disconnected manifold, and (iv) data
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Technique Parameter settings
PCA None
Isomap 5 ≤ k ≤ 15
Kernel PCA κ = (XXT + 1)5

MVU 5 ≤ k ≤ 15
Diffusion maps 10 ≤ t ≤ 100 σ = 1
LLE 5 ≤ k ≤ 15
Laplacian Eigenmaps 5 ≤ k ≤ 15 σ = 1
Hessian LLE 5 ≤ k ≤ 15
LTSA 5 ≤ k ≤ 15
Sammon mapping None
Autoencoders Three hidden layers
LLC 5 ≤ k ≤ 15 5 ≤ m ≤ 25
Manifold charting 5 ≤ m ≤ 25

Table 2: Parameter settings for the experiments.

forming a manifold with a high intrinsic dimensionality. The artificial datasets on which we performed
experiments are: the Swiss roll dataset (addressing i), the helix dataset (ii), the twin peaks dataset (ii),
the broken Swiss roll dataset (iii), and the high-dimensional (HD) dataset (iv). The equations that were
used to generate the artificial datasets are given in the appendix. Figure 4 shows plots of the first four ar-
tificial datasets. The HD dataset consists of points randomly sampled from a 5-dimensionial non-linear
manifold embedded in a 10-dimensional space. In order to ensure that the generalization errors of the
k-nearest neighbor classifiers reflect the quality of the data representations produced by the dimension-
ality reduction techniques, we assigned all datapoints to one of two classes according to a checkerboard
pattern on the manifold. All artificial datasets consist of 5,000 samples. We opted for a fixed number
of datapoints in each dataset, because in real-world applications, obtaining more training data is usually
expensive.
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(a) Swiss roll dataset.
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(b) Helix dataset.
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(c) Twinpeaks dataset.
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(d) Broken Swiss roll dataset.

Figure 4: Four of the artificial datasets.
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Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA SammonAutoenc.LLC MC
Swiss roll (2D) 3.68% 29.76% 3.40% 30.24% 4.12% 33.50% 3.74% 22.06% 3.56% 3.90% 22.34% 49.00% 26.72% 22.66%
Helix (1D) 1.24% 35.50% 13.18% 38.04% 7.48% 35.44% 32.32% 15.24% 52.22% 0.92% 52.22% 52.22% 27.44% 25.94%
Twin peaks (2D) 0.40% 0.26% 0.22% 0.12% 0.56% 0.26% 0.94% 0.88% 0.14% 0.18% 0.32% 49.06% 11.04% 0.30%
Broken Swiss (2D) 2.14% 25.96% 14.48% 32.06% 32.06% 58.26% 36.94% 10.66% 6.48% 15.86% 27.40% 87.86% 37.06% 32.24%
HD (5D) 24.19% 22.18% 23.26% 27.46% 25.38% 23.14% 20.74% 24.70% 50.02% 42.62% 20.70% 49.18% 34.14% 21.34%

Table 3: Generalization errors of 1-NN classifiers trained on artificial datasets (smaller numbers are
better).

Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA SammonAutoenc.LLC MC
Swiss roll (2D) −− 0.88 0.99 0.88 1.00 0.81 1.00 0.92 1.00 1.00 0.89 0.46 0.81 0.88
Helix (1D) −− 0.78 0.74 0.71 0.96 0.73 0.83 0.87 0.35 1.00 0.35 0.64 0.76 0.83
Twin peaks (2D) −− 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.99 0.99 1.00 0.52 0.86 1.00
Broken Swiss (2D) −− 0.96 0.97 0.96 0.97 0.78 0.94 0.97 0.92 0.89 0.97 0.70 0.86 0.96
HD (5D) −− 1.00 0.98 1.00 0.98 1.00 1.00 0.98 0.56 0.94 1.00 0.68 0.89 1.00

Table 4: Trustworthinesses T (12) on the artificial datasets (larger numbers are better).

6.1.2 Five Natural Datasets

For our experiments on natural datasets, we selected five datasets that represent tasks from a variety of
domains: (1) the MNIST dataset, (2) the COIL20 dataset, (3) the NiSIS dataset, (4) the ORL dataset, and
(5) the HIVA dataset. The MNIST dataset is a dataset of 60,000 handwritten digits. For computational
reasons, we randomly selected 5,000 digits for our experiments. The images in the MNIST dataset have
28 × 28 pixels, and can thus be considered as points in a 784-dimensional space. The COIL20 dataset
contains images of 20 different objects, depicted from 72 viewpoints, leading to a total of 1,440 images.
The size of the images is 32 × 32 pixels, yielding a 1,024-dimensional space. The NiSIS dataset is
a publicly available dataset for pedestrian detection, which consists of 3,675 grayscale images of size
36× 18 pixels (leading to a space of dimensionality 648). The ORL dataset is a face recognition dataset
that contains 400 grayscale images of 112×92 pixels that depict 40 faces under various conditions (i.e.,
the dataset contains 10 images per face). The HIVA dataset is a drug discovery dataset with two classes.
It consists of 3,845 datapoints with dimensionality 1,617.

6.2 Experiments on Artificial Datasets

In Table 3, we present the generalization errors of 1-nearest neighbor classifiers that were trained and
tested on the low-dimensional data representations obtained from the dimensionality reduction tech-
niques. We ran the experiments for all parameter settings described in Table 2, and for each technique,
we report the best generalization error of all runs in Table 3. In the table, the left column indicates
the name of the dataset and the target dimensionality to which we attempted to transform the high-
dimensional data. The best performing technique for each dataset is shown in boldface. Table 4 presents
the corresponding trustworthiness values of the low-dimensional embeddings (again, only the best trust-
worthiness of all runs is reported). Table 5 presents the corresponding continuity measures. From the
results in Table 3, 4, and 5, we make four observations.

First, the results reveal the strong performance of techniques based on neighborhood graphs (Isomap,
MVU, LLE, Laplacian Eigenmaps, Hessian LLE, and LTSA) on artificial datasets such as the Swiss roll
dataset. Techniques that do not employ neighborhood graphs (viz. PCA, diffusion maps, Kernel PCA,
Sammon mapping, and autoencoders) perform poorly on artificial datasets such as the Swiss roll dataset.
The performance of the two techniques that align local linear models (LLC and manifold charting) on

Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA SammonAutoenc.LLC MC
Swiss roll (2D) −− 1.00 0.99 0.99 1.00 0.91 1.00 0.99 1.00 1.00 1.00 0.50 0.99 1.00
Helix (1D) −− 0.98 0.97 0.98 1.00 0.98 0.99 0.99 0.50 1.00 0.50 0.75 0.98 0.99
Twin peaks (2D) −− 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.50 0.98 1.00
Broken Swiss (2D) −− 1.00 0.98 0.99 1.00 0.90 0.98 0.99 0.99 0.99 1.00 0.73 0.99 1.00
HD (5D) −− 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.56 0.98 1.00 0.89 0.91 1.00

Table 5: Continuity C(12) on the artificial datasets (larger numbers are better).
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Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA Sammon Autoenc. LLC MC
MNIST (20D) 5.11% 6.74% 12.64% 13.86% 13.58% 25.00% 10.02% 11.30% 91.66% 90.32% 6.90% 7.18% 16.12% 14.84%
COIL20 (5D) 0.14% 3.82% 15.69% 7.78% 25.14% 11.18% 22.29% 95.00% 50.35% 4.17% 0.83% 51.11% 4.31% 27.36%
ORL (8D) 2.50% 4.75% 27.50% 6.25% 24.25% 90.00% 11.00% 97.50% 56.00% 12.75% 2.75% 6.25% 11.25% 22.50%
NiSIS (15D) 8.24% 7.95% 13.36% 9.55% 15.67% 48.98% 15.48% 47.59% 48.98% 24.68% 48.98% 9.22% 26.86% 18.91%
HIVA (15D) 4.63% 5.05% 4.92% 5.07% 4.94% 5.46% 4.97% 4.81% 3.51% 3.51% 3.51% 5.12% 3.51% 4.79%

Table 6: Generalization errors of 1-NN classifiers trained on natural datasets (smaller numbers are
better).

Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA Sammon Autoenc. LLC MC
MNIST (20D) −− 1.00 0.96 0.99 0.92 0.95 0.96 0.89 0.54 0.54 1.00 1.00 0.93 0.97
COIL20 (5D) −− 0.99 0.89 0.98 0.92 0.91 0.93 0.27 0.69 0.96 0.99 0.88 0.96 0.92
ORL (8D) −− 0.99 0.78 0.98 0.95 0.49 0.95 0.29 0.76 0.94 0.99 0.99 0.79 0.82
NiSIS (15D) −− 0.99 0.89 0.99 0.90 0.40 0.92 0.47 0.47 0.82 0.47 0.99 0.85 0.89
HIVA (15D) −− 0.97 0.87 0.89 0.89 0.75 0.80 0.78 0.42 0.54 0.42 0.98 0.91 0.95

Table 7: Trustworthinesses T (12) on the natural datasets (larger numbers are better).

the Swiss roll dataset are comparable to those of techniques that do not employ neighborhood graphs
(although manifold charting outperforms LLC).

Second, from the results of the experiments on the helix dataset, we observe that Hessian LLE, a
technique that performs strong on the Swiss roll dataset, may perform less well on manifolds that are
not isometric to Euclidean space. The performance of LLE on the helix dataset is also notably worse
than its performance on the Swiss roll dataset. The other techniques based on neighborhood graphs
(Isomap, MVU, LLE, Laplacian Eigenmaps, and LTSA) perform strong on the helix dataset, despite the
non-isometric nature of the dataset.

Third, the high generalization errors (and relatively low trutworthinesses and continuities) on the
broken Swiss roll dataset indicate that most nonlinear techniques for dimensionality reduction do not
perform well under the presence of disconnected (i.e., non-smooth) manifolds in the data.

Fourth, from the results on the HD dataset, we observe that nonlinear techniques may have problems
when they are faced with a dataset with a high intrinsic dimensionality. In particular, Hessian LLE and
LTSA perform disappointing on the dataset with a high intrinsic dimensionality. On the HD dataset, the
performance of PCA is surprisingly strong.

Taken together, the results show that manifold learners perform well on data that forms a low-
dimensional manifold, such as the frequently used Swiss roll dataset. However, the results also reveal
that the strong performance on the Swiss roll dataset does not always generalize to more complex
datasets, such as datasets with disconnected manifolds, manifolds that are not isometric to the Euclidean
space, or manifolds with a high intrinsic dimensionality.

6.3 Experiments on Natural Datasets

Table 6 presents the generalization errors of 1-nearest neighbor classifiers that were trained on the low-
dimensional data representations of the natural datasets that were obtained from the dimensionality
reduction techniques. Table 7 presents the corresponding trustworthiness values. Again, we only present
the results of the best run of all runs that use the range of parameters that is given in Table 2. From the
results in Table 6 and 7, we make two observations.

First, we observe that the performance of manifold learners on the natural datasets is disappointing
compared to the performance of these techniques on the artificial datasets. In contrast, many techniques
that do not employ neighborhood graphs such as PCA, Sammon mapping, and autoencoders perform

Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA Sammon Autoenc. LLC MC
MNIST (20D) −− 1.00 0.94 0.89 0.93 0.95 0.96 0.70 0.50 0.50 1.00 1.00 0.91 0.96
COIL20 (5D) −− 1.00 0.90 0.98 0.97 0.92 0.95 0.47 0.71 0.99 1.00 0.92 0.96 0.95
ORL (8D) −− 0.99 0.76 0.95 0.97 0.57 0.95 0.49 0.76 0.94 0.99 0.98 0.80 0.79
NiSIS (15D) −− 1.00 0.84 0.98 0.94 0.48 0.91 0.48 0.47 0.64 0.47 1.00 0.84 0.89
HIVA (15D) −− 0.99 0.84 0.88 0.94 0.80 0.80 0.54 0.51 0.62 0.51 0.99 0.87 0.96

Table 8: Continuity C(12) on the natural datasets (larger numbers are better).
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well on (most of) the natural datasets. In particular, PCA and autoencoders outperform the other tech-
niques on four of the five datasets when the techniques are assessed based on the trustworthiness of their
embeddings. On the COIL-20 dataset, the performance of autoencoders is slightly less strong, most
likely due to the small number of instances that constitute this dataset, which hampers the successful
training of the large number of weights in the network. Globally, the difference between the results of
the experiments on the artificial and the natural datasets is significant: techniques that perform well on
artificial datasets perform poorly on natural datasets, and vice versa.

Second, the results show that on many natural datasets, the classification performance of our classi-
fiers was not improved by performing dimensionality reduction. Presumably, this is due to the charac-
teristics of the intrinsic dimensionality estimator which we employed. This estimator may select target
dimensionalities that are suboptimal in the sense that they do not minimize the generalization error of
the trained classifiers. However, since we aim to compare the performance of dimensionality reduction
techniques, and not to minimize generalization errors on classification problems, this observation is of
no relevance to our study.

7 Discussion

In the previous sections, we presented a comparative study of techniques for dimensionality reduction.
We observed that most nonlinear techniques do not outperform PCA on natural datasets, despite their
ability to learn the structure of complex nonlinear manifolds. This section discusses the main weak-
nesses of current nonlinear techniques for dimensionality reduction that explain the results of our exper-
iments. In addition, the section presents ideas on how to overcome these weaknesses. The discussion
is subdivided into four parts. Subsection 7.1 discusses the main weaknesses of full spectral dimension-
ality reduction techniques. In subsection 7.2, we address five weaknesses of sparse spectral techniques
for dimensionality reduction. Subsection 7.3 discusses the main weaknesses of the non-convex dimen-
sionality reduction techniques. Subsection 7.4 summarizes the main weaknesses of current nonlinear
techniques for dimensionality reduction and presents some concluding remarks on the future develop-
ment of dimensionality reduction techniques.

7.1 Full Spectral Techniques

Our discussion on the results of full spectral techniques for dimensionality reduction is subdivided into
two parts. First, we discuss the results of the two neighborhood graph-based techniques, Isomap and
MVU. Second, we discuss weaknesses explaining the results of the two kernel-based techniques, Kernel
PCA and diffusion maps.

For the first part, we remark that full spectral techniques for dimensionality reduction that employ
neighborhood graphs, such as Isomap and MVU, are subject to many of the weaknesses of sparse spec-
tral techniques that we will discuss in subsection 7.2. In particular, the construction of the neighborhood
graph is susceptible to the curse of dimensionality, overfitting, and the presence of outliers (see 7.2 for
a detailed explanation). In addition to this problems, Isomap suffers from short-circuiting: a single er-
roneous connection in the neighborhood graph may severely affect the pairwise geodesic distances, as a
result of which the data is poorly embedded in the low-dimensional space. Moreover, Isomap uses clas-
sical scaling to construct a low-dimensional embedding from the pairwise geodesic distances. The cost
function of classical scaling causes Isomap to focus on retaining the large geodesic distances, instead of
on the small geodesic distance that constitute the local structure of the data. A possible solution to this
problem is presented in [146]. MVU suffers from a similar problem as Isomap: a single short-circuit
in the neighborhod graph may lead to an erroneous constraint in the semidefinite program that severely
affects the performance of MVU.

For the second part, we remark that kernel-based techniques for dimensionality reduction (i.e., Ker-
nel PCA and diffusion maps) do not suffer from the weaknesses of neighborhood graph-based tech-
niques. However, the performance of Kernel PCA and diffusion maps on the Swiss roll dataset indicates
that (similar to PCA) these techniques are incapable of modeling complex nonlinear manifolds. The
main reason for this incapability is that kernel-based methods require the selection of a proper kernel
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function. In general, model selection in kernel methods is performed using some form of hold-out
testing [54], leading to high computational costs. Alternative approaches to model selection for kernel
methods are based on, e.g., maximizing the between-class margins or the data variance (as in MVU)
using semidefinite programming [55, 77]. Despite these alternative approaches, the construction of a
proper kernel remains an important obstacle for the successful application of Kernel PCA. In addition,
depending on the selection of the kernel, kernel-based techniques for dimensionality reduction may suf-
fer from similar weaknesses as other manifold learners. In particular, when a Gaussian kernel with a
small bandwidth σ is employed, Kernel PCA and diffusion maps may be susceptible to the curse of
intrinsic dimensionality (see 7.2), i.e., their performance may be inversely proportional to the intrinsic
dimensionality of the data. Diffusion maps largely resolve the short-circuiting problems of Isomap by
integrating over all paths through a graph defined of the data, however, they are still subject to the second
problem of Isomap: diffusion maps focus on retaining large diffusion distances in the low-dimensional
embedding, instead of on retaining the small diffusion distances that constitute the local structure of the
data.

7.2 Sparse Spectral Techniques

The results of our experiments show that the performance of the popular sparse spectral techniques,
such as LLE, is rather disappointing on many real-world datasets. Most likely, the poor performance of
these techniques is due to one or more of the following five weaknesses.

First, sparse spectral techniques for dimensionality reduction suffer from a fundamental weakness
in their cost function. For instance, the optimal solution of the cost function of LLE (see Equation 13) is
the trivial solution in which the coordinates of all low-dimensional points yi are zero. This solution is not
selected because LLE has a constraint on the covariance of the solution, viz., the constraint ‖y(k)‖2 = 1
for ∀k. Although the covariance constraint may seem to have resolved the problem of selecting a trivial
solution, it is easy to ‘cheat’ on it. In particular, LLE often constructs solutions in which most points
are embedded on the origin, and there are a few ‘strings’ coming out of the origin that make sure the
covariance constraint is met (at a relatively small cost). Moreover, the simple form of the covariance
constraint in LLE may give rise to undesired rescalings of the manifold [52]. The same problems also
apply to Laplacian Eigenmaps, Hessian LLE, and LTSA, which have similar covariance constraints.

Second, all sparse spectral dimensionality reduction techniques suffer from the curse of dimension-
ality of the embedded manifold, i.e., from the curse of the intrinsic dimensionality of the data [16,
136, 15], because the number of datapoints that is required to characterize a manifold properly grows
exponentially with the intrinsic dimensionality of the manifold. The susceptibility to the curse of di-
mensionality is a fundamental weakness of all local learners, and therefore, it also applies to learning
techniques that employ Gaussian kernels (such as Support Vector Machines). For artificial datasets with
low intrinsic dimensionality such as the Swiss roll dataset, this weakness does not apply. However, in
most real-world tasks, the intrinsic dimensionality of the data is much higher. For instance, the face
space is estimated to consist of at least 100 dimensions [90]. As a result, the performance of local tech-
niques is poor on many real-world datasets, which is illustrated by the results of our experiments with
the natural datasets.

Third, the inferior performance of sparse spectral techniques for dimensionality reduction arises
from the eigenproblems that the techniques attempt to solve. Typically, the smallest eigenvalues in
these problems are very small (around 10−7 or smaller), whereas the largest eigenvalues are fairly
big (around 102 or larger). Eigenproblems with these properties are extremely hard to solve, even
for state-of-the-art eigensolvers. The eigensolver may not be able to identify the smallest eigenvalues
of the eigenproblem, and as a result, the dimensionality reduction technique might produce suboptimal
solutions. The good performance of Isomap and MVU (that search for the largest eigenvalues) compared
to sparse spectral techniques (that search for the smallest eigenvalues) may be explained by the difficulty
of solving eigenproblems.

Fourth, local properties of a manifold do not necessarily follow the global structure of the manifold
(as noted in, e.g., [104, 24]) in the presence of noise around the manifold. In other words, sparse
spectral techniques suffer from overfitting on the manifold. Moreover, sparse spectral techniques suffer
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from folding [23]. Folding is caused by a value of k that is too high with respect to the sampling
density of (parts of) the manifold. Folding causes the local linearity assumption to be violated, leading
to radial or other distortions. In real-world datasets, folding is likely to occur because the data density
may vary over the manifold (i.e., because the data distribution is not uniform over the manifold). An
approach that might overcome this weakness for datasets with small intrinsic dimensionality is adaptive
neighborhood selection. Techniques for adaptive neighborhood selection are presented in, e.g., [135, 89,
107]. Furthermore, sparse spectral techniques for dimensionality reduction are sensitive to the presence
of outliers in the data [28]. In local techniques for dimensionality reduction, outliers are connected
to their k nearest neighbors, even when they are very distant. As a consequence, outliers degrade
the performance of local techniques for dimensionality reduction. A possible approach to resolve this
problem is the usage of an ε-neighborhood. In an ε-neighborhood, datapoints are connected to all
datapoints that lie within a sphere with radius ε. A second approach to overcome the problem of outliers
is preprocessing the data by removing outliers [148, 95].

Fifth, the local linearity assumption of sparse spectral techniques for dimensionality reduction im-
plies that the techniques assume that the manifold contains no discontinuities (i.e., that the manifold
is smooth). The results of our experiments with the broken Swiss dataset illustrate the incapability
of sparse spectral dimensionality reduction techniques to model non-smooth manifolds. In real-world
datasets, the underlying manifold is not likely to be smooth. For instance, a dataset that contains differ-
ent object classes is likely to constitute a disconnected underlying manifold. In addition, most sparse
spectral techniques cannot deal with manifolds that are not isometric to Euclidean space, which is illus-
trated by the results of our experiments with the helix and twinpeaks datasets. This may be a problem,
because for instance, a dataset of objects depicted under various orientations gives rise to a manifold
that is closed (similar to the helix dataset).

In addition to these five weaknesses, Hessian LLE and LTSA cannot transform data to a dimen-
sionality higher than the number of nearest neighbors in the neighborhood graph, which might lead to
difficulties with datasets with a high intrinsic dimensionality.

7.3 Non-convex Techniques

Obviously, the main problem of non-convex techniques is that they optimize non-convex objective func-
tions, as a result of which they suffer from the presence of local optima in the objective functions. For
instance, the EM algorithm that is employed in LLC and manifold charting is likely to get stuck in a
local maximum of the log-likelihood function. In addition, LLC and manifold charting are hampered by
the presence of outliers in the data. In techniques that perform global alignment of linear models (such
as LLC), the sensitivity to the presence of outliers may be addressed by replacing the mixture of factor
analyzers by a mixture of t-distributed subspaces (MoTS) model [36, 35]. The intuition behind the use
of the MoTS model is that a t-distribution is less sensitive to outliers than a Gaussian (which tends to
overestimate variances) because it is heavier-tailed.

For autoencoders, the presence of local optima in the objective function has largely been overcome
by the pretraining of the network using RBMs or denoising autoencoders. A limitation of autoencoders
is that they are only applicable on datasets of reasonable dimensionality. If the dimensionality of the
dataset is very high, the number of weights in the network is too large to find an appropriate setting of
the network. This limitation of autoencoders may be addressed by preprocessing the data using PCA.
Moreover, successful training of autoencoders requires the availibility of sufficient amounts of data, as
illustrated by our results with autoencoders on the COIL-20 dataset.

Despite the problems of the non-convex techniques mentioned above, our results show that con-
vex techniques for dimensionality reduction do not necessarily outperform non-convex techniques for
dimensionality reduction. In particular, multilayer autoencoders perform very well on all five natural
datasets. Most likely, these results are due to the larger freedom in designing non-convex techniques,
allowing the incorporation of procedures that circumvent many of the problems of (both full and sparse)
spectral techniques mentioned above. In particular, multilayer autoencoders provide a deep architecture
(i.e., an architecture with multiple nonlinear layers), as opposed to shallow architectures (i.e., archi-
tectures with a single layer of nonlinearity) such as the convex techniques that are discussed in this
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study [15]. The main advantage of such a deep architecture is that, in theory, it may require exponen-
tially less datapoints to learn the structure of highly varying manifolds, as illustrated for a d-bits parity
dataset in [13]. Hence, although convex techniques are much more popular in dimensionality reduction
(and in machine learning in general), our results suggest that suboptimally optimizing a sensible objec-
tive function is a more viable approach than optimizing a convex objective function that contains obvious
flaws. This claim is also supported by strong results that were recently obtained with t-SNE [128], a
non-convex multidimensional scaling variant that was published after we performed our comparative
study.

7.4 Main Weaknesses

Taken together, the results of our experiments indicate that, to date, nonlinear dimensionality reduction
techniques perform strongly on selected datasets that typically contain well-sampled smooth manifolds,
but that this strong performance does not necessarily extend to real-world data. This result agrees with
the results of studies reported in the literature. On selected datasets, nonlinear techniques for dimen-
sionality reduction outperform linear techniques [94, 123], but nonlinear techniques perform poorly on
various other natural datasets [56, 68, 67, 86]. In particular, our results establish three main weaknesses
of the popular sparse spectral techniques for dimensionality reduction: (1) flaws in their objective func-
tions, (2) numerical problems in their eigendecompositions, and (3) their susceptibility to the curse of
dimensionality. Some of these weaknesses also apply to Isomap and MVU.

From the first weakness, we may infer that a requirement for future dimensionality reduction tech-
niques is that either the minimum of the cost function is a non-trivial solution, or the constraints on the
objective are sufficiently complex as to prevent the technique from selecting a solution that is close to
the trivial solution. Our results suggest the development of such cost function should be pursued, even
if this prompts the use of a non-convex objective function. In the design of a non-convex technique,
there is much more freedom to construct a sensible objective function that is not hampered by obvious
flaws. The strong results of autoencoders support this claim, as well as recent results presented for
t-SNE [128].

The second weakness leads to exactly the same suggestion, but for a different reason: convex objec-
tive functions are often hard to optimize as well. In particular, sparse eigendecompositions are subject to
numerical problems because it is hard to distinguish the smallest eigenvalues from the trivial zero eigen-
value. Moreover, interior point methods such as those employed to solve the SDP in MVU require the
computation of the Hessian, which may be prohibiting successful optimization for computational rea-
sons (on medium-sized or large datasets, MVU can only be performed using a variety of approximations
that result in suboptimal solutions).

From the third weakness, we may infer that a requirement for future techniques for dimensionality
reduction is that they do not rely completely on local properties of the data. It has been suggested that
the susceptibility to the curse of dimensionality may be addressed using techniques in which the global
structure of the data manifold is represented in a number of linear models [16], however, the perfor-
mance of LLC and manifold charting in our experiments is not good enough to support this suggestion.
The strong performance of autoencoders in our experiments suggests that it is beneficial to use deep
architectures that contain more than one layer of nonlinearity.

8 Conclusions

The paper presented a review and comparative study of techniques for dimensionality reduction. From
the results obtained, we may conclude that nonlinear techniques for dimensionality reduction are, de-
spite their large variance, often not capable of outperforming traditional linear techniques such as PCA.
In the future, we foresee the development of new nonlinear techniques for dimensionality reduction
that (i) do not suffer from the presence of trivial optimal solutions, (ii) may be based on non-convex
objective functions, and (iii) do not rely on neighbourhood graphs to model the local structure of the
data manifold. The other important concern in the development of novel techniques for dimensionality
reduction is their optimization, which should be computationally and numerically feasible in practice.
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A Related Techniques

The comparative review presented in this paper addresses all main techniques for (nonlinear) dimen-
sionality reduction. However, it is not exhaustive.

The comparative review does not include self-organizing maps [73] and their probabilistic extension
GTM [19], because these techniques combine a dimensionality reduction technique with clustering, as a
result of which they do not fit in the dimensionality reduction framework that we discussed in Section 2.
Techniques for Independent Component Analysis [12] are not included in our review, because they were
mainly designed for blind-source separation. Linear Discriminant Analysis [46], Generalized Discrim-
inant Analysis [9], and Neighborhood Components Analysis [53, 106], and recently proposed metric
learners [32, 8, 51, 137] are not included in the review, because of their supervised nature. Furthermore,
our comparative review does not cover a number of techniques that are variants or extensions of the
thirteen reviewed dimensionality reduction techniques. These variants include factor analysis [117],
Gaussian Process Latent Variable Models [80], principal curves [28], kernel maps [118], conformal
eigenmaps [113], Geodesic Nullspace Analysis [24], Structure Preserving Embedding [114], variants of
multidimensional scaling [3, 38, 45, 62, 92], techniques that (similarly to LLC and manifold charting)
globally align a mixture of linear models [104, 109, 133], and linear variants of LLE [58, 74], Lapla-
cian Eigenmaps [59], and LTSA [147]. Also, our review does not cover latent variable models that are
tailored to a specific type of data such as Latent Dirichlet Allocation [20].

B Details of the Artificial Datasets

In this appendix, we present the equations that we used to generate the five artificial datasets. Suppose
we have two random numbers pi and qi that were sampled from a uniform distribution with support
[0, 1]. For the Swiss roll dataset, the datapoint xi is constructed by computing xi = [ti cos(ti), ti sin(ti),
30qi], where ti = 3π

2 (1+2pi). For the broken Swiss roll dataset, all datapoints xi for which 2
5 < ti <

4
5

are rejected and resampled. For the helix dataset, the datapoint xi is contructed by computing xi =
[(2 + cos(8pi)) cos(pi), (2 + cos(8pi)) sin(pi), sin(8pi)]. For the twinpeaks dataset, the datapoint xi is
constructed by xi = [1 − 2pi, sin(π − 2πpi)) tanh(3 − 6qi)]. To all datapoints, Gaussian noise with a
small variance is added. The HD dataset is constructed by sampling from a five-dimensional uniform
distribution (with domain [0, 1] over each dimension), and embedding these in a ten-dimensional space
by computing ten different combinations of the five random variables, some of which are linear and
some of which are nonlinear. Matlab code that generates all artificial datasets is available in the Matlab
Toolbox for Dimensionality Reduction at http://ict.ewi.tudelft.nl/∼lvandermaaten/
dr.
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