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Abstract

Maximum likelihood learning in Markov Random Fields (MRFs) with multiple lay-
ers of hidden units is typically performed using contrastive divergence or one of its
variants. After learning, samples from the model are generally used to estimate ex-
pectations under the model distribution. Recently, Welling proposed a new approach
to working with MRFs with a single layer of hidden units. The approach, called
herding, tries to combine the two stages, learning and sampling, into a single stage.
Herding runs the network as a deterministic dynamical system, similar to a Hopfield
network. Expectations computed over trajectories of the dynamical system can be
shown to converge to expectations computed over the data.
In this technical report, we investigate herding in MRFs with multiple layers of hid-
den units, so-called deep networks. We derive the herding dynamics for deep net-
works, and we investigate the effect of three important characteristics on the perfor-
mance of classifiers that are trained on energy averages over the herding trajectories:
(1) the effect of the step size employed in the herder, (2) the effect of different ini-
tializations of the network in the positive and in the negative phase, and (3) the effect
of different network architectures. From the results of our experiments, we observe
that, although in networks with a single layer of hidden units the performance can be
proven to be equal for finite step sizes, the step size highly influences the performance
of herders in deep networks. Moreover, our results suggest that herding in deep net-
works requires a different type of network architecture than deep MRF models that
are trained using maximum likelihood learning. Presumably, these experimental ob-
servations can be explained by a decoupling phenomenon in the top hidden units: the
top hidden units run decoupled from the data, as a result they only feed noise into the
network. In order to successfully herd in deep networks, future work should develop
and investigate approaches to prevent higher hidden layers from decoupling.
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1 Introduction

The recent development of new training approaches for deep networks, most of which are based on
unsupervised greedy layer-by-layer training procedures [8], has led to renewed interest in these type
of networks [1, 2, 5, 6, 8, 9, 16, 17, 19, 20, 22, 28]. Deep networks model the distribution over the
data space using layers of hidden variables, in which the layers are formed by hidden units that are not
interconnected1. The hidden variables may be either deterministic, probabilistic, or a combination of
those two. The use of deterministic hidden variables gives rise to feed-forward neural networks such
as autoencoders [9], whereas the use of probabilistic hidden variables gives rise to models such as deep
Boltzmann machines [22]. A combination of deterministic and probabilistic hidden variables is used in
models such as Deep Belief Networks [8]. In the remainder of this paper, we focus on models in which
all data and hidden variables are random variables, in which the structure of the deep network specifies
a specific type of factorized joint distribution.

A key characteristic of deep networks is that each layer of hidden variables (or features) can capture
higher-order relations between the variables in the layers below it. As opposed to shallow architectures
such as kernel machines that only provide a single layer of nonlinearity, deep networks perform multiple
nonlinear transformations of the data to construct the data representation in the top hidden layer. Though
both kernel machines and deep networks are universal approximators [25, 23], deep networks may be
exponentially more efficient in the number of training samples they require to learn complex nonlinear
functions [2, 3]. For a detailed overview on the differences between deep and shallow architectures, and
the potential advantages of the use of deep networks, we refer to [2].

The typical way of working with deep Markov Random Field models consists of two main stages2.
First, the parameters of the model are learned by maximizing the log-likelihood of the training data
under the model. Second, the trained model is used to perform inference, for instance, to infer a pos-
terior over classes or to infer a latent representation of the data. Recently, Welling [30, 31] proposed a
radically different approach by defining a dynamical system, a so-called ‘herder’, that deterministically
generates a sequence of parameter settings for the network. The average of the energies of data under
these model instantations can in turn be used to perform classification or to construct latent data repre-
sentations. Welling used herding only in fully observed MRFs [31] and in MRFs with a single layer of
hidden variables [30], i.e., in a Restricted Boltzmann Machine [24]. In this paper, we extend herding to
deep MRF models.

The outline of the remainder of this paper is as follows. In section 2, we give an overview of
the structure and the maximum likelihood learning procedure of deep Boltzmann machines. Section 3

1We should note here that it is possible to work with Markov Random Fields in which all variables are interconnected, but
such networks are usually very hard to train [21].

2One could also consider a fully Bayesian treatment of deep MRFs, but such a treatment is doubly-intractable [18].
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introduces herding and derives the herding equations for deep Boltzmann machines. In section 4, we
present the results of experiments with herding in deep Boltzmann machines with a variety of network
architectures. The results of these experiments are discussed in section 5. Conclusions and directions
for future work are presented in section 6.

2 Deep Boltzmann Machines

A deep Boltzmann machine [22] is a Markov Random Field (MRF) with binary variables that form M
layers of hidden variables, which have no lateral connections (i.e., two hidden variables in the same
layer are never interconnected), and hidden layers are only connected to the two layers that are directly
below and above them (except for the bottom and top layer, which are only connected to the layer above
and below them, respectively). An example of a deep Boltzmann machine with M = 3 hidden layers is
shown in Figure 1.

As for all undirected graphical models [4], the joint distribution over all nodes in the model is given
by a Gibbs distribution

p(v,h(1), . . . ,h(M)|θ) =
1

Z(θ)
exp

(
E
(
v,h(1), . . . ,h(M); θ

))
, (1)

where we denoted the visual nodes by v, the hidden nodes in layer m by h(m), the model parameters
by θ, the partition function by Z(θ), and where E represents an energy function that is the sum of the
potential functions over all maximal cliques in the graph. Denoting the weight matrices by W(m), we
define a linear energy function for the model

E
(
v,h(1), . . . ,h(M); θ

)
= −vTW(1)h(1) − vTb(0) −

M∑
m=2

h(m−1) TW(m)h(m) −
M∑

m=1

(h(m))Tb(m),

(2)
where the model parameters are θ = {W(1), . . . ,W(M),b(0), . . . ,b(M)}. In the remainder of the paper,
we will omit the biases on all random variables to avoid the notation from becoming too cluttered. The
linear energy function and the binary nature of the nodes leads to the following conditional distribution
over the visual nodes v given the states of the hidden nodes h(1) in the first hidden layer

p
(
v|h(1)

)
= σ

(
vTW(1)h(1)

)
,

where σ represents the sigmoid function σ(x) = 1
1+exp(−x) . Similarly, the conditional distributions over

the m-th hidden layer h(m) given the states of the nodes in the adjacent layers are given by

p
(
h(m)|h(m−1),h(m+1)

)
= σ

(
h(m−1)TW(m)h(m) + h(m)TW(m+1)h(m+1)

)
, 1 < m < M,

p
(
h(M)|h(M−1)

)
= σ

(
h(M−1)TW(M)h(M)

)
,

where we misused the notation by assuming that v = h(0).
The log-likelihood of a training point under a deep Boltzmann machine can be obtained by combin-

ing Equation 1 and 2, marginalizing out the hidden variables, and taking the logarithm of the resulting
expression. The log-likelihood of a dataset with N data points is thus proportional to

L(θ) = − log Z(θ) +
1
N

N∑
n=1

log
∑

h
(1)
n ,...,h

(M)
n

exp

(
−vT

nW(1)h(1)
n −

M∑
m=2

h(m−1) T
n W(m)h(m)

n

)
,

where vn denotes the n-th of the N training points, and h(m)
n its corresponding node activations in the

m-th layer (note that finding the activations h(1)
n , . . . ,h(M)

n that maximize the log-likelihood is generally
intractable in deep MRFs).
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Figure 1: Example of a deep Boltzmann machine with M = 3 hidden layers.

Maximum likelihood learning in (deep) Boltzmann machines [10] is computationally very expen-
sive, as it requires randomly initialized Markov chains to approach their equilibrium distribution for each
parameter update, making it impractical for use on all but very small toy datasets. Recently, a compu-
tationally feasible training algorithm for deep Boltzmann machines was proposed that consists of two
main stages [22]. First, the weights of the network are pretrained using a greedy layer-by-layer train-
ing procedure that employs Restricted Boltzmann Machines [8]. Second, the weights of the pretrained
deep Boltzmann machine are finetuned using a variant of contrastive divergence [7, 26] that employs
mean-field approximations in the positive phase, thereby maximizing a variational lower bound on the
log-likelihood. An overview of the learning procedure is given on the following page.
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Learning Procedure for Deep Boltzmann Machines [22]:
Given: training set of N training samples {vn}Nn=1, initial learning rate α0

• Train a stack of Restricted Boltzmann Machines [8] to initialize θ0 =
{
W(1), . . . ,W(m)

}
, and

randomly generate P fantasy particles
{
ṽ0

p, h̃
(1),0
p , . . . , h̃(M),0

p

}P

p=1
.

• For t = 1 to T iterations:

– For each training example vn, n = 1 to N :

∗ Set µ(0)
n = vn, and randomly initialize µ

(1)
n , . . . ,µ

(M)
n and perform mean-field updates:

µ(m)
n ← σ

(
(µ(m−1)

n )TW(m)µ(m)
n + (µ(m)

n )TW(m+1)µ(m+1)
n

)
, 1 ≤ m < M,

µ(M)
n ← σ

(
(µ(M−1)

n )TW(M)µ(M)
n

)
, 1 ≤ m < M,

– For each fantasy particle ṽp, p = 1 to P :

∗ Obtain a new state
{
ṽt

p, h̃
(1),t
p , . . . , h̃(M),t

p

}
by running a Gibbs sampler for k steps,

initializing at the previous state
{
ṽt−1

p , h̃(1),t−1
p , . . . , h̃(M),t−1

p

}
.

– Perform gradient update of parameters:

W(1) ←W(1) + αt

 1
N

N∑
n=1

vn(µ(1)
n )T − 1

P

P∑
p=1

ṽp(h̃(1)
p )T

 , (3)

W(m) ←W(m) + αt

 1
N

N∑
n=1

µ(m−1)
n (µ(m)

n )T − 1
P

P∑
p=1

h̃(m−1)
p (h̃(m)

p )T

 , 1 < m ≤M.

(4)

– Decrease learning rate αt.

3 Herding

To derive the herding equation for deep Boltzmann machines, we first note that he log-likelihood of a
deep Boltzmann machine can be rewritten in terms of a variational approximation [13] as follows

L(θ) = − log Z(θ) +
1
N

N∑
n=1

max
qn

E

[
−vT

nW(1)h(1)
n −

M∑
m=2

h(m−1) T
n W(m)h(m)

n

]
qn

+H(qn)

 ,

where the distribution qn(h(1)
n , . . . ,h(M)

n ) represents the variational approximation to the posterior dis-
tribution p(h(1)

n , . . . ,h(M)
n |vn, θ), and H(qn) is the Shannon entropy of this approximation. This vari-

ational approximation of the log-likelihood is derived in Appendix A. Similarly, the partition function
can also be written in terms of a variational approximation as follows

log Z(θ) = max
r

 ∑
v,h(1),...,h(M)

[
E

[
−vTW(1)h(1) −

M∑
m=2

h(m−1) TW(m)h(m)

]
r

+H(r)

] ,

where the distribution r(v,h(1), . . . ,h(M)) is the variational approximation to the posterior distribution
p(v,h(1), . . . ,h(M)|θ).

As the energy function is linear in its parameters θ, we can introduce a rescaling constant η (a
“temperature”) for these parameters by replacing W(m) by W(m)

η for ∀m in Equation 3. We denote the
resulting function by Lη(θ).
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We can investigate the behavior of the function Lη(θ) in the limit as η goes to zero. In the limit
η → 0, the entropy terms simply vanish. Without the respective entropy terms, for a given set of weights
θ, the distributions {qn} and r that maximize their respective terms are delta-peaks. As a result, we can
simply replace the expectations in the log-likelihood function by maximizations. The zero-temperature
limit of the log-likelihood function thus amounts to

L0(θ) = lim
η→0
Lη(θ) =

1
N

N∑
n=1

max
(h

(1)
n ,...,h

(M)
n )

[
−vT

nW(1)h(1)
n −

M∑
m=2

h(m−1) T
n W(m)h(m)

n

]
− (5)

max
(v,h(1),...,h(M))

[
−vTW(1)h(1) −

M∑
m=2

h(m−1) TW(m)h(m)

]
. (6)

The resulting function L0(θ) is a piecewise linear function that reaches its maximum of 0 when all
weights are zero. The zero-temperature limit of the log-likelihood function is, therefore, sometimes
referred to as a tipi function [31].

In the remainder of the paper, we use the notation (h(1)∗
n , . . . ,h(M)∗

n ) and (v∗,h(1)∗, . . . ,h(M)∗)
to represent the values that maximize their respective terms in Equation 6. In the zero-temperature
limit, there is no point in trying to maximize the log-likelihood function with respect to its parameters
θ, as it is known which parameter setting maximizes the function3. Instead, the idea of herding is to
run gradient ascent on the function L0(θ) with a fixed step size. Due to the use of a finite step size,
the gradient ascent never converges to the maximum of L0(θ) that is at θ = 0, but instead, it pseudo-
randomly explores the tipi function. The gradient ascent procedure essentially runs a dynamical system
that generates a parameter setting at each iteration of the gradient ascent. It can be shown that the
resulting dynamical system is ergodic: the average of statistics of data under the model instantations
converge to the expected value of these statistics under the likelihood solution of the corresponding
MRF as the number of pseudo-samples goes to infinity. The only condition that is required to hold is
that the weights do not go to infinity, but this condition seems relatively easy to satisfy. For the detailed
ergodicity proof, we refer to Appendix B.

In the deep models we investigate (where M > 1), herding amounts to iteratively performing the
following three steps: (1) updating the hidden states with the visible states clamped until convergence,
i.e., the positive phase, (2) freely running the network until convergence, i.e., the negative phase, and
(3) updating the network weights by performing a gradient ascent step. The equations corresponding to
these three steps are worked out below.

In the positive phase, a datavector vn is clamped, and the hidden units are iteratively updated until
convergence in order to maximize the first term ofL0(θ). The update equations are found by maximizing
the energy function with respect to the units, to find

h(m)
n ← sgn

(
(h(m−1)

n )TW(m) + W(m+1)h(m+1)
n − 1

2

)
, for 1 ≤ m < M,

h(M)
n ← sgn

(
(h(M−1)

n )TW(M) − 1
2

)
,

where again, we misused notation by assuming h(0)
n = vn. In order to perform the maximization of

the first term of L0(θ), these updates need to be run until convergence. If the network contains more
than one layer of hidden units, the iterative updates converge only to a local maximum of the energy.
The initialization of the hidden units is thus relevant to the results that are obtained. Three possible
strategies for initialization of the hidden units in the positive phase are: (i) a single random initialization
for each data point, (ii) random initializations for each of the data points, and (iii) initialization using
one persistent chain per data point. In the experiments in section 4.2.2, we compare the performance of
herder using these three initialization approaches for the negative phase.

In the negative phase, the network is allowed to run freely until it converges to a local maximum
of the energy function in order to generate a single pseudo-sample (ṽ, h̃(1), . . . , h̃(M)). In contrast to

3Note that this is very different from the maximum-likelihood learning setting for deep Boltzmann machines, in which
L1(θ) is maximized with respect to the parameters θ.
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the positive phase, the visible units are not clamped in the negative phase. The update equations can be
obtained similar to those for the positive phase, and are given by

ṽ← sgn
(
W(1)h̃(1) − 1

2

)
,

h̃(m) ← sgn
(

(h̃(m−1))TW(m) + W(m+1)h̃(m+1) − 1
2

)
, for 1 ≤ m < M,

h̃(M) ← sgn
(

(h̃(M−1))TW(M) − 1
2

)
,

where again, we misused notation by assuming h̃(0) = ṽ. The update equations for the negative phase
are run until convergence to perform the desired energy maximization. Again, since different initializa-
tions of the network cause the updates to converge to different local energy maxima, the initialization
of the network may affect the results. For the initialization of the network in the negative phase, one
may use (1) random initialization or (2) initialization using a persistent chain. In our experiments in
section 4.2.2, we investigate the performance of these two initialization approaches for the negative
phase.

In the weight update phase, the weights are updated by performing a gradient update of the param-
eters using the sufficient statistics gathered in the positive and the negative phase. The weight updates
are similar to the updates used in maximum likelihood learning in MRFs, and are given by

W(1) ←W(1) + α

(
1
N

N∑
n=1

vn(h(1)
n )T − ṽ(h̃(1))T

)
,

W(m) ←W(m) + α

(
1
N

N∑
n=1

h(m−1)
n (h(m)

n )T − h̃(m−1)(h̃(m))T

)
, for 1 < m ≤M.

Note that the weight updates have three main differences compared to the updates for maximum like-
lihood learning in deep Boltzmann machine we discussed in section 2: (1) the step size is not adjusted
over time, (2) in the positive part of the gradient, the states of the hidden units are not obtained using
a mean-field approximation but using an energy maximization, and (3) the sufficient statistics in the
negative part of the gradient are not obtained by averaging over phantasy particles, but by computing
sufficient statistics based on a single pseudo-sample.

A potential problem of deep herding is that, although the moment constraints are satisfied in herding,
there is no guarantee that herding employs the available hidden units in order to construct a good model.
Herding may simply ignore the presence of the hidden units, leading to a complete decoupling of the
hidden and the visible units (thus making the hidden units superfluous). When performing maximum
likelihood learning in Markov Random Fields, this problem does not occur because maximum likelihood
learning tries to maximize the entropy in the hidden units. Experimental results with herding in models
with a single layer of hidden units did not reveal such decoupling behavior [30]. We return to the
decoupling topic in our discussion in Section 5.

A second potential problem is that the update equations presented above only converge to a local
energy maximum, whereas the ergodicity proof assumes convergence to the global energy maximum.
This problem led us to investigate various initialization approaches in Section 4.2.2, the aim of which is
to find local energy maxima that are as good as possible.

4 Experiments

In this section, we present the results of experiments with deep herding on the USPS handwritten digits
dataset. The setup of these experiments is described in 4.1. The results of the experiments are presented
in 4.2.
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4.1 Experimental setup

We performed experiments on the USPS handwritten digits dataset. The dataset contains 1, 100 exam-
ples of each of the 10 digits, leading to a dataset with 11, 000 data points. The digit images have a size of
16×16 pixels, and were binarized using a threshold of 0.3. In all experiments on the USPS handwritten
digits dataset, we randomly split up the data into a training set that contains 66% of the data, a test set
that contains 24% of the data, and a validation set that contains 10% of the data. For each class in the
data, we run a herder on all instances in the training set that belong to that class for 2, 000 iterations.
During the first 1, 000 iterations, no energies are computed, whereas during the second 1, 000 iterations,
we compute the energies of the data that is used to run the herder, as well as of the test and validation
data. We denote the energy of the training data with class label c, the test data, and the validation data at
herding iteration t by E

(t)
train(c), E

(t)
test, and E

(t)
valid, respectively. Following Welling [30], we normalize

the test and validation energies at each iteration by computing the corresponding Z-scores, and we per-
form online averaging of the test and validation energies over the 1, 000 iterations at which the energies
are recorded (recall that statistics computed during herding are only meaningful is they are averaged
over herding iterations). An overview of the procedure that computes an average of the normalized
energies (for the validation and the test set) over herding iterations is on the next page.
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Herding Procedure for Deep Boltzmann Machine:
Given: training set of N training examples {vn}Nn=1, step size α, validation and test set.

• Initialize parameters
{
W(1), . . . ,W(m)

}
and generate a fantasy particle (ṽ0, h̃(1),0, . . . , h̃(M),0).

• For c = 1 to C classes:

– For t = 1 to T iterations:

∗ For each training example vn of class c, n = 1 to N :
· Initialize hn and run dynamical system until convergence:

h(m)
n ← sgn

(
h(m−1)T

n W(m)h(m)
n + h(m)T

n W(m+1)h(m+1)
n − 1

2

)
, for 1 ≤ m < M,

h(M) ← sgn
(

(h(M−1))TW(M) − 1
2

)
.

∗ Obtain a new state
{
ṽt, h̃(1),t, . . . , h̃(M),t

}
by running the dynamical system until con-

vergence, initializing at the previous state
{
ṽt−1, h̃(1),t−1, . . . , h̃(M),t−1

}
:

ṽ← sgn
(
W(1)h̃(1) − 1

2

)
,

h̃(m) ← sgn
(

(h̃(m−1))TW(m) + W(m+1)h̃(m+1) − 1
2

)
, for 1 ≤ m < M,

h̃(M) ← sgn
(

(h̃(M−1))TW(M) − 1
2

)
.

∗ Perform update of parameters using fixed step size:

W(1) ←W(1) + α

(
1
N

N∑
n=1

vn(h(1)
n )T − ṽt(h̃(1),t)T

)
,

W(m) ←W(m) + α

(
1
N

N∑
n=1

h(m−1)
n (h(m)

n )T − h̃(m−1),t(h̃(m),t)T

)
, for 1 < m ≤M.

∗ For each training example vn of class c, for n = 1 to Ntrain:

· Initialize (h(1)
n , . . . ,h(M)

n ), and run dynamical system until convergence.
· Compute energy of training example vn under the converged solution:

E
(t)
train(c)(vn,h(1)

n , . . . ,h(M)
n ) = vnW(1)h(1)

n +
M∑

m=2

h(m−1)
n W(m)h(m)

n .

∗ Similarly, compute E
(t)
valid for each validation example and E

(t)
test for each test example.

∗ Normalize energies of test and validation examples Ẽ
(t)
test and Ẽ

(t)
valid (compute Z-score):

Ê
(t)
valid(vn,h(1)

n , . . . ,h(M)
n ) =

E
(t)
valid(vn)− µ

E
(t)
train(c)

(vn,h
(1)
n ,...,h

(M)
n )

σ
E

(t)
train(c)

(vn,h
(1)
n ,...,h

(M)
n )

,

Ê
(t)
test(vn,h(1)

n , . . . ,h(M)
n ) =

E
(t)
test(vn)− µ

E
(t)
train(c)

(vn,h
(1)
n ,...,h

(M)
n )

σ
E

(t)
train(c)

(vn,h
(1)
n ,...,h

(M)
n )

.

∗ Perform online averaging of Ẽ
(t)
test and Ẽ

(t)
valid.
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Figure 2: Generalization error of logistic classifiers trained on normalized herding energies for different
step sizes (using a 256− 100− 50 network).

The above procedure produces C average normalized energies for each of the data points in the
validation set and test set. These average normalized energies can thus be viewed as C-dimensional
features, which can be used to perform clustering, construct low-dimensional data representation, and
to train classifiers on. We opt to train various classifiers on the average normalized energies of the vali-
dation test set, and use the trained classifiers to classify the data points in the test set, in order to assess
the performance of the herder. In particular, we use logistic regression classifier, linear discriminant
classifiers, and 7-nearest neighbor classifiers. Also, we perform classification based on energy maxima
in the average normalized energies.

Following [30], we use a [−1, 1]-representation for all visible and hidden units in the deep Boltz-
mann machine in all stages of the process (i.e., in the herding and in the energy computations). Such a
representation is also used in, for instance, Ising models [11].

4.2 Results

This subsection presents the results of our experiments on the USPS dataset. The subsection consists
of three main parts. First, we investigate the effect of varying the step size α of the herder. Second, we
investigate the effect of using different initialization strategies in the positive phase of the herder. Third,
we investigate the performance of herding in a variety of network architectures (all of which have to
layers of hidden features).

4.2.1 Investigating step sizes

In Figure 2, we present a graph that shows generalization errors of logistic regression classifiers that
were trained and test on average normalized energies obtained by performing herding in a 256−100−50
network. The generalization errors were determined for a variety of values of the step size α of the
herder. In these experiments, we use a single random initialization in the positive phase and a persistent
chain to initialize the network in the negative phase. The reader should note that the values for α are on
a logarithmic scale.

The results reveal that, for deep networks, the selection of the step size of the herder may have
a significant influence on the quality of the extracted features. This is an interesting observation, as
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for networks with a single hidden layer one can prove that the selection of the value of α does not
influence the results, because of a scale-invariance property [30]. In our experiments with 256−100−50
networks, the lowest classification error of 3.85% was obtained using a step size of α = 10−4. We
also performed similar experiments with two-layer networks with different architectures. The results
of these experiments are not presented here, but they showed exactly the same pattern: a step size of
approximately 10−4 appears optimal for all networks with two hidden layers4.

The results suggest that, when herding is performed in networks with more than one layer of hidden
units, having too much entropy in, specifically, the top hidden layer leads to inferior results. The entropy
in the top hidden layer can be regularized by decreasing the step size. However, a step size that is too
small leads

4.2.2 Investigating initialization strategies

In Table 1 and 2, we present the results of experiments in which we measured classification errors of
logistic regression classifiers, linear discriminant classifiers, and 7-nearest neighbor classifiers trained
on normalized energies obtained by performing herding in a 256 − 100 − 50 network, using three
different initialization strategies in the positive phase and two different initialization strategies in the
negative phase. We also present the generalization error of a classifier that classifies a test instance
by determining for which herder (note we train one herder per class) the average normalized energy is
maximal. In particular, we investigate three strategies to initialize the network in the positive phase:
(1) using a single random initialization for all data points, (2) using a different random initialization for
each data point, and (3) using a persistent chain to obtain the initialization. We investigate two strategies
to initialize the network for the negative phase: (1) using random initialization and (2) using a persistent
chain to obtain the initialization. In all experiments, we used a step size α of 10−4.

Positive initialization Logistic regression LDC 7-Nearest neighbor Maximum energy
Single random 3.91% 7.09% 6.91% 12.45%
Multiple random 5.00% 8.18% 6.73% 14.18%
Persistent 3.18% 6.09% 5.09% 12.09%

Table 1: Generalization errors of four classifiers trained on normalized energies obtained by herding in
networks using various initializations for the positive phase. In the negative phase, we used initialization
using a persistent chain. The best performance is typeset in boldface.

Positive initialization Logistic regression LDC 7-Nearest neighbor Maximum energy
Single random 11.36% 12.55% 19.36% 33.18%
Multiple random 10.00% 11.36% 16.73% 36.73%
Persistent 10.09% 11.45% 15.73% 21.27%

Table 2: Generalization errors of four classifiers trained on normalized energies obtained by herding
in networks using various initializations for the positive phase. In the negative phase, we used random
initialization. The best performance is typeset in boldface.

From the results in Table 1 and 2, we observe that using a persistent chain in the negative phase has
significant advantages compared to using random initialization. This result is in line with observations
on maximum likelihood learning of deep Boltzmann machines [22]. From the results in the tables, we
also observe that it appears to be beneficial to use a persistent chain to initialize the network in the
positive phase. We surmise the use of a persistent chain in the positive phase is beneficial because it
finds better local energy maxima on average: as a result of the small weight updates in the positive
phase, the persistent chain initializes the network relatively close to the local energy maximum of the
previous herding iteration. Because in the previous herding iteration, we increased the probability of

4Preliminary experiments with networks with three hidden layers suggested that even lower step sizes are required for such
networks.
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that local energy maximum, we are likely to end up in a better local energy maximum in the present
iteration than a random initialization would. For similar reasons, the use of a positive persistent chain
may be helpful when performing maximum likelihood learning of deep Boltzmann machines as well.

4.2.3 Investigating network structures

In Table 3, we present the results of experiments in which we measured classification errors of logistic
regression classifiers, linear discriminant classifiers, and 7-nearest neighbor classifiers trained on aver-
age normalized energies obtained by running the herding procedure in two-layer networks with a variety
of architectures. We also present the generalization error of a classifier that classifies a test instance by
determining for which herder (note we train one herder per class) the average normalized energy is
maximal. In all experiments, we use a single random initialization in the positive phase and a persistent
chain to initialize the negative phase. The step size α was fixed to 10−4.

Architecture Logistic regression LDC 7-Nearest neighbor Maximum energy
256− 50− 30 4.55% 8.36% 6.36% 14.18%
256− 50− 50 7.73% 13.00% 9.73% 17.91%
256− 75− 30 4.64% 7.36% 6.82% 12.64%
256− 75− 50 4.36% 7.64% 5.55% 12.45%
256− 75− 75 4.73% 8.64% 6.91% 13.55%
256− 100− 30 3.45% 5.73% 4.55% 12.82%
256− 100− 50 3.18% 6.09% 5.09% 12.09%
256− 100− 75 5.36% 9.72% 8.82% 14.27%
256− 100− 100 5.09% 10.27% 9.27% 16.18%
256− 125− 30 3.82% 5.91% 5.73% 10.64%
256− 125− 50 4.91% 7.64% 6.45% 12.82%
256− 125− 75 4.64% 7.18% 6.18% 11.91%
256− 150− 100 5.55% 10.91% 9.00% 11.82%

Table 3: Generalization errors of three classifiers trained on normalized energies obtained by herding in
networks with various architectures. The best performance is typeset in boldface.

The most prominent observation we can make from the presented results is that adding more units
to the hidden layer(s) does not necessarily improve the performance of the herder. These results are
not in line with the results presented for networks with a single hidden layer [30], where more hidden
units appeared to improve the performance of the classifiers. In particular, the presented results suggest
that it is beneficial to use network architectures in which each hidden layer has significantly less hidden
units than the layer below it. In particular the best-performing network architectures appear to be the
256−100−30, 256−100−50, and 256−125−30 networks. The results of our experiments with various
network architectures are in large contrast with results that were presented for deep architectures trained
using contrastive divergence or one of its variants [8, 22, 26, 27]. In such architectures, it is generally
beneficial to have one or more large layers of hidden units that construct an overcomplete representation
of the data. As in Section 4.2.2, the results suggest that the top hidden layer is primarily contributing
noise to the network energy, i.e., that it is running completely decoupled from the data. We return to
this issue in our discussion in Section 5.

On the USPS dataset, the lowest generalization error of 3.18% was achieved by performing herding
in a 256 − 100 − 50 network, and classifying the test data points using a logistic regression classifier.
The performance of 3.18% is almost as good as the results presented for herding in networks with a
single hidden layer [30]. However, in none of our experiments, we were able to outperform herding in
a single-layer network with, say, 500 or 1000 hidden units.

In Figure 3, we show a visualization of the USPS dataset constructed by performing dimensionality
reduction using t-SNE [29] on the average normalized energies of the validation and test data. The
normalized energies were obtained by performing herding in the 256− 100− 50 network (note that the
labels for the validation and test energy need not be known in order to construct the visualization; the
labels are only used to color the points in the map). We also show a visualization of the same data that
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was produced by running t-SNE on the same data, but now, using the pixel values as high-dimensional
input5. The results show that the proposed herding procedure can exploit the available label information
to improve the separation between classes, for instance, between the classes 7 and 9. Also, the number
of ‘outliers’ in the map of the herding energies appears to be lower than the number of outliers in the
map of the original pixel data.
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(a) Map of the original pixel data.
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(b) Map of the normalized energies produced by herding.

Figure 3: Visualizations of the USPS validation and test data constructed by t-SNE [29]. The maps
reveal that herding can exploit label information to obtain better separation between classes.

5 Discussion

From the results presented in the previous section, we make two main observations.
First, we observe that the results of our experiments with a range of step sizes α reveal that herding in

deep networks is not scale-invariant. This contradicts with the scale-invariance property that (provably)
holds for herding in fully observed MRFs and in MRFs with a single layer of hidden units.

Second, we observe that herding in deep networks appears to require the use of completely different
network architectures than those that are typically used when training deep Boltzmann machines or other
types of deep neural networks [9, 15, 22]. Whereas maximum likelihood learning in deep networks
typically perform well when at least some of the hidden layers have lots of units (thereby constructing
an overcomplete data representation), herding appears to work best in networks in which higher-level
hidden layers have significantly less units than the layers below them.

These two observations suggest that the top units in our deep networks are effectively not contribut-
ing to the herding process: they appear to run essentially decoupled from the data. As a result, the
input of the top hidden units into the middle will be primarily noise, which hampers the performance
of the herding procedure. Lowering the step size or reducing the number of top hidden units essentially
reduces the amount of noise, which leads to a better generalization performance6, explaining the two
experimental observations above. In order for herding in deep networks to outperform herding in single-
layer networks, the development of an approach that prevents this decoupling is required. One could
add connections between the visible units and the top layer hidden units, but this essentially leads to
a single-layer network with more hidden units and some lateral connections between the hidden units.
Another approach may be to treat the deep network as a stack of single-layer networks, as is often done
when training deep networks using maximum likelihood (see Section 2), but it is unclear how such an

5Note that the plots are not meant as a qualitative comparison. In the construction of the right plot, label information was
exploited by the herder, whereas the left plot was constructed in a fully unsupervised manner.

6We note that inserting a small amount of noise may actually be beneficial, as the noise may serve as a sort of regularizer.
However, such a ‘regularizer’ most likely only works if it consists of a few top hidden units.
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approach should be implemented in practice. We leave the development of approaches that prevent
decoupling during herding in deep networks for future work.

An additional problem with herding in deep networks is that is not possible to identify global energy
maxima in the positive and the negative phase in polynomial time. A similar problem occurs when
training deep Boltzmann machines using maximum likelihood (see Section 2), which prompts the use
of mean-field approximations [22]. In herding, it appears to be possible to address the problem by using
sensible initialization procedures. Also, errors that are due to getting stuck in poor local energy maxima
are likely to average out over herding iterations. Certainly, the local energy maxima problem is less
severe than the decoupling problems discussed above.

6 Conclusions

In this paper, we investigated the application of herding to deep Boltzmann machines. We investigated
the effect of varying step size, initialization strategy, and network architecture on the performance of
deep herders. Hitherto, we were not able to establish a performance improvement of deep herders over
herding in a Markov Random Field with a single layer of hidden units. Most likely, our experimental
results can be explained from a decoupling phenomenon that occurs in the deeper layers of our networks:
these layers run freely while completely ignoring the input data.

A large number of directions for future work into herding remain. First and foremost, approaches
that may prevent decoupling should be investigated. We made some suggestions in Section 5. From a
mathematical perspective, it is interesting to investigate the characteristics of the dynamical system in
herding, for instance, what is the attractor set of a herder. From a learning perspective, many alternative
network architectures may be investigated, e.g., fully connected architectures [21], architectures with
some lateral connections [19], architectures in which some variables are conditioned upon [14], archi-
tectures in which the joint probability of class labels and features is modeled [8], and architectures that
have non-binary observed variables [32].
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A Derivation of the variational approximation

Recall that the log-likelihood of a data point vn under a deep Boltzmann machine is given by

L(n)(θ) = log
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n ,...,h
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We can rewrite the log-likelihood function in terms of the free energy as follows
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,
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where we introduced the variational distribution qn, and where the inequality is due to Jensen’s inequal-
ity [12]. The right-hand side of the inequality is typically referred to as the free energy F (n)(qn; θ), and
it is a lower bound on the log-likelihood. The free energy breaks up into two terms

F (n)(qn; θ) =
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h
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n ,...,h
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n
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n , . . . ,h(M)
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The free energy is equal to the log-likelihood iff qn(h(1)
n , . . . ,h(M)

n ) equals p(h(1)
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n |vn, θ). In
other words, if we maximize the free energy over qn(h(1)

n , . . . ,h(M)
n |θ), we obtain the equality

L(n)(θ) = max
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For deep Boltzmann machines, this expression amounts to

L(n)(θ) = max
qn
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 ,

which completes the result.

B Proof of ergodicity

The proof of ergodicity shows that the average sufficient statistics of the pseudo-samples obtained from
a herder converge to the expected value of these statistics under the maximum likelihood solution of
the corresponding MRF (as the number of pseudo-samples goes to infinity). The only condition that is
required to hold is that the weights do not go to infinity. Mathematically, ergodicity can be expressed as
follows:

Proposition: If ∀i, j, m limT→0
1
T W
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where we misused notation by assuming vi = h0
i and ṽi = h̃0

i .

Proof: First, note that at each iteration t, the change in the weights can be written as
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In the limit T →∞, assuming that the weights are finite in all iterations, the term 1
T

(
W

(m),t
ij −W

(m),0
ij

)
goes to 0. Hence, in the limit T →∞, the term in Equation 7 thus has to go to 0 as well, which proves
the result.
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