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13 ABSTRACT: The combination of mass spectrometry imaging
14 and histology has proven a powerful approach for obtaining
15 molecular signatures from specific cells/tissues of interest,
16 whether to identify biomolecular changes associated with specific
17 histopathological entities or to determine the amount of a drug in
18 specific organs/compartments. Currently there is no software that
19 is able to explicitly register mass spectrometry imaging data
20 spanning different ionization techniques or mass analyzers.
21 Accordingly, the full capabilities of mass spectrometry imaging are at present underexploited. Here we present a fully
22 automated generic approach for registering mass spectrometry imaging data to histology and demonstrate its capabilities for
23 multiple mass analyzers, multiple ionization sources, and multiple tissue types.

24Mass spectrometry imaging (MSI) is a rapidly developing
25 imaging modality that can provide the spatial distribu-
26 tion of hundreds of biomolecules directly from tissue.1 It has
27 already had a substantial impact in clinical and pharmacological
28 research, uncovering biomolecular changes associated with
29 disease2 and providing low-cost imaging of pharmaceuticals and
30 their metabolites for drug formulation development.3 The
31 integration of the biomolecular information obtained by MSI
32 with the anatomical structure provided by histology has proven
33 essential for its clinical and pharmacological application,4 for
34 example, to identify biomolecular changes associated with
35 specific histopathological entities2 (e.g., tumors) or to
36 determine the amount of a drug in specific organs/compart-
37 ments.3

38 The insignificant loss of histoanatomical structures after
39 performance of MSI experiments allows coregistration between
40 MSI data and its histological image.4,5 To date, this is
41 performed by most researchers either manually or, for data
42 sets acquired on Bruker Daltonics instruments running the
43 FlexImaging MSI data acquisition software, semiautomatically
44 by using fiducial markers. Veselkov et al. recently reported
45 using binary masks of the histological image and MSI data to
46 perform the registration automatically.6 In this approach the
47 registration algorithm aligns the boundaries of the masks using
48 a global transformation. While this approach is suited to the
49 desorption electrospray ionization based MSI experiments

50reported in the paper, the significant background in MSI data
51sets recorded using matrix-assisted laser desorption/ioniza-
52tion7,8 (MALDI) and secondary ion mass spectrometry9

53(SIMS) make defining the MSI binary mask more problematic.
54Furthermore, MALDI and SIMS MSI data sets are frequently
55acquired from nontransparent mounting substrates (e.g., a gold-
56coated steel plate or silicon wafer); in such cases the
57histological images are acquired from proximal tissue sections.
58Small histological differences between the tissue sections as well
59as local deformations resulting from their preparation (folds,
60tears) mean that localized elastic transformations are necessary
61for their correct registration. A generic registration approach
62must therefore accurately trace the local differences in tissue
63structure to make it robust to the background signals present in
64MALDI and SIMS measurements.
65The main challenge is to automatically determine the spatial
66correspondences between the MSI data and the histological
67image. The multivariate techniques k-means clustering,10

68principal component analysis (PCA),11 probabilistic latent
69semantic analysis,12 and non-negative matrix factorization13

70have all been used to approximately demarcate, on the basis of
71the MSI signals, different histological regions. These are all

Received: June 12, 2014
Accepted: August 18, 2014

Article

pubs.acs.org/ac

© XXXX American Chemical Society A dx.doi.org/10.1021/ac502170f | Anal. Chem. XXXX, XXX, XXX−XXX

pubsdm_prod | ACSJCA | JCA10.0.1465/W Unicode | research.3f (R3.6.i5 HF03:4230 | 2.0 alpha 39) 2014/07/15 09:23:00 | PROD-JCA1 | rq_2756080 | 8/21/2014 15:54:42 | 8 | JCA-DEFAULT

pubs.acs.org/ac


72 linear dimensionality reduction algorithms that focus on
73 representing dissimilar data points in a lower dimensional
74 space (e.g., the maximization of variance in PCA is determined
75 by the most dissimilar data points in Euclidean space). One of
76 the difficulties of using these methods is selecting the
77 appropriate number of dimensions; a number of papers have
78 shown that the images generated by these methods are
79 dependent on the number of dimensions (components)
80 selected for the analysis.10 Another is that, by focusing on
81 keeping the most dissimilar data points far apart in the lower
82 dimensionality representation, they can fail to preserve the local
83 structure of the data.14 In MSI this means that the analysis
84 implicitly focuses on the largest differences in the data set, and
85 can merge regions whose molecular differences are minor in
86 comparison.15 While this merging may be alleviated by
87 changing the number of dimensions used in the multivariate
88 analysis, the dependence of the images on the number of
89 dimensions (clusters) and the bias toward the largest Euclidian
90 differences in the data set make such techniques suboptimal for
91 summarizing the spatial structures of MSI data sets.
92 Fonville et al. recently demonstrated that the nonlinear
93 technique t-distributed stochastic neighbor embedding (tSNE)
94 outperforms linear dimensionality reduction techniques for
95 summarizing MSI data sets.15 tSNE is a nonlinear dimension-
96 ality reduction technique developed by van der Maaten et al.
97 that maps data points from high-dimensional space into a
98 matrix of pairwise similarity in a lower dimensional space.14

99 The hallmark that characterizes tSNE is its ability to capture the
100 local structures of high-dimensional data as well as preserving
101 their global features. In MSI this means that relationships
102 characterized by large differences in mass spectral profiles can
103 be visualized concomitantly with those characterized by minor
104 differences (which would be merged by linear techniques such
105 as PCA).15

106 The tSNE representation of MSI data reveals clearly
107 distinguishable anatomical regions that can be treated as
108 landmarks for guiding the coregistration process with histology.
109 Importantly, the tSNE analysis does not require any user input
110 and so can be completely automated. Here we report tSNE-
111 enabled automated alignment of MSI data sets with histology.
112 The method is generic, and we demonstrate its ability on data
113 sets from different organs, different mass spectrometers, and
114 different ionization methods.

115 ■ METHODS

116 Experimental Data Sets. The automatic alignment routine
117 has been tested on data sets from four different mass
118 spectrometers, representing four different types of MSI
119 experiments, and spanning a wide range of spatial resolution.
120 The algorithm was then validated on a sizable animal cohort of

t1 121 96 mouse brain coronal tissue sections. Table 1 provides a
122 summary of the MSI data sets. Further experimental details

123about the MSI data acquisition can be found in the Supporting
124Information.
125Histology Preprocessing. The stained histological images
126need first to be preprocessed to exclude the background noise,
127correct for potential image acquisition artifacts (e.g., inhomoge-
128neous lighting and exposure, noise because of dust on the
129slides), and maximize contrast. We applied the histological
130preprocessing pipeline proposed by Abdelmoula et al.16 in
131which the images were classified into two clusters using k-
132means (k = 2) followed by morphological operations (opening,
133closing, and region filling with a disk-shaped structural
134element) to close any potential gaps in the clustered image.
135The resulting binary mask is then used to separate the tissue
136from the background.
137MSI Preprocessing. MALDI-TOFProteolytic Peptides.
138Each pixel’s mass spectrum was first processed using
139FlexAnalysis (version 3.4, Bruker Daltonics); mass spectral
140smoothing was performed with the Gauss algorithm (width
1410.02 m/z and two cycles) and baseline subtraction with the top-
142hat algorithm. The MSI data were read into MATLAB R2013a
143(MathWorks, Natick, MA) where they underwent total-ion-
144count normalization.7 Peak picking was performed on the
145global base peak mass spectrum after smoothing, resampling,
146and baseline subtraction and was performed using an adapted
147version of the data reduction code previously reported by
148McDonnell et al.17 The base peak spectrum displays the
149maximum intensity detected in the entire imaging data set for
150every peak and is more effective for detecting peaks with
151localized distributions.17 Peak areas were then extracted from
152every pixel’s mass spectrum. This reduced and more computa-
153tionally manageable representation of a mass spectrum was
154then placed, on the basis of its original coordinate information,
155as a pixel into a project-specific data cube13 and was used for
156the subsequent registration with histology.
157MALDI-TOFProteins. The data set was processed
158identically to the MALDI-TOFproteolytic peptides data
159set, except the mass spectral preprocessing parameters were
160adapted for intact proteins. Here, each pixel’s mass spectrum
161was smoothed using the Savitsky−Golay algorithm with a width
162of 2.0 m/z and five cycles and baseline subtracted with the top-
163hat algorithm (10% width).
164MALDI Synapt. The data preprocessing was done employing
165our in-house-developed ChemomeTricks toolbox for MATLAB
166(MathWorks). In the first step the raw data were converted into
167a MATLAB format. Mass channels were binned into 0.1 Da
168wide mass bins. Peak picking was performed on a global mean
169mass spectrum after smoothing. The peak picking algorithm has
170been described in detail elsewhere.18 The created peak list
171consisted of 1707 mass channels, each of which was defined by
172its center m/z and an m/z window (peak width at the baseline).
173The peak list was used to integrate each pixel’s mass spectrum.

Table 1. Overview of MSI Data Sets Used in This Studya

tissue sample type ion source mass analyzer pixel size (μm) molecular class measured histology

thyroid cancer FFPE MALDI TOF/TOF 150 proteolytic peptides H&E
mouse brain frozen MALDI TOF 100 proteins Nissl
mouse brain frozen MALDI ion mobility TOF 150 lipids Nissl
mouse brain frozen SIMS TOF 19.2 metabolites Nissl

aAbbreviations used: FFPE, formalin-fixed and paraffin-embedded; H&E, hematoxylin and eosin. Note: The SIMS data sets were recorded with 0.3
μm pixel size but were rebinned to 19.2 μm for visualization of the entire area in a single 512 × 512 pixel image. All calculations were performed on
this rebinned image.
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174 TOF-SIMS. The data preprocessing was done employing our
175 in-house-developed ChemomeTricks toolbox for MATLAB
176 (MathWorks). Mass channels were binned into 0.05 Da wide
177 mass bins. An average spectrum of all pixels was used for peak
178 picking. Peak picking was performed on a global mean mass
179 spectrum after smoothing as described in detail by Eijkel et al.18

180 The created peak list consisted of 1400 selected mass channels.
181 Pixels were spatially binned, resulting in a 256 × 256 pixel data
182 set and a final spatial resolution of 19.2 μm. The peak list was
183 used to integrate each pixel’s mass spectrum. Subsequently, a
184 multiorder correction algorithm based on linear discriminant
185 analysis (LDA) was applied to remove MS image distortions
186 caused by the mosaic character of the data acquisition.19 Finally,
187 the data were recalibrated on gold coating related peaks with
188 well-known m/z values.20

189 tSNE of MSI Data Sets. Each processed MSI data set was
190 unfolded into a set of 1D vectors, X = [x1, x2, ..., xk], in which
191 each vector xi represents the normalized mass spectral profile of
192 the ith pixel. tSNE was then applied to find the low-
193 dimensionality representation, in this case a 3D representation,
194 Y = (y1, y2, y3). The joint probabilities pij were first calculated to
195 establish the pairwise similarities between data points xi and xj
196 for all pairs in the high-dimensional space. Then the joint
197 probabilities qij were calculated for all pairs yi and yj in the low-
198 dimensional space. The optimum low-dimensional representa-
199 tion (i.e., Y) that maximizes the similarities between pij and qij
200 was found by minimizing the Kullback−Leibler divergence KL
201 over all data points:

∑ ∑ ∑=P Q p
p

q
KL( ) log

i
i i

i j
ij

ij

ij202 (1)

203 where Pi and Qi represent the joint probabilities in the high-
204 and low-dimensional spaces, respectively. The optimization
205 problem was solved using the gradient descent method,
206 yielding an optimum 3D representation of the original
207 hyperdimensional MSI data set. For visualization, each of the
208 three tSNE output dimensions was treated as a separate color
209 channel, and the results were displayed as a 2D RGB (red,
210 green, blue) image.15 tSNE was performed using the default
211 settings described by van der Maaten et al.14 and the tSNE
212 Matlab toolbox (http://homepage.tudelft.nl/19j49/t-SNE.
213 html).
214 Image Registration. The high-resolution histological
215 images and the MSI data were acquired from either the same
216 tissue sections (MALDI data) or adjacent sections (SIMS data).
217 In the former case the histological images and MSI data differ
218 only in their coordinate space and image resolution and thus
219 can be registered using rotation, scaling, and translation (rigid
220 registration). For adjacent sections we also added an elastic
221 deformation step to account for minor differences in brain
222 region size as well as artifacts introduced during sectioning and
223 mounting of the tissue sections.
224 The registration algorithm transforms a moving image,
225 Im(x,y), to be spatially aligned with a fixed image, If(x,y). The
226 moving image was the gray scale tSNE image and the fixed
227 image the preprocessed histological image. The rigid transform
228 was used to model rotation, scaling, and translation
229 deformations through optimization of the standard registration
230 problem given in the following equation:

μ ̂ = μμ C I I Targ min ( , ; )f m231 (2)

232μ is a vector which contains the transformation parameters that
233were optimized by minimizing the cost function C with respect
234to the transformation model Tμ using the adaptive stochastic
235gradient descent optimizer.21 The statistical metric mutual
236information22 was used as a cost function to assess the
237registration quality. Mutual information (MI) has demonstrated
238high efficiency in multimodal data registration, particularly
239when the intensity distributions of the images differ. MI
240measures the degree of difference in the intensity distributions
241between the moving and fixed images through measurement of
242their marginal and joint entropies:

= + −I I H I H I H I IMI( , ) ( ) ( ) ( , )f m f m f m 243(3)

244H(If) and H(Im) represent the marginal entropies of the fixed
245and moving images, respectively. The best alignment is
246achieved through the transformation metric in which the
247joint entropy H(If,Im) is minimal.
248For experiments that use the adjacent tissue section for
249histology, an additional step was incorporated in which the B-
250spline transform was used to correct any local deformations;
251mutual information was again the cost function, and the
252adaptive stochastic gradient descent optimizer was used to
253achieve the best similarity through optimization of the B-spline
254parameters. To capture deformations on different length scales,
255the registration was applied using a multiresolution scheme and
256implemented using elastix.23 This elastic registration step is an
257adaptation of that previously reported for the registration of
258MSI data sets to the Allen Brain Atlas,16 in which experimental
259histological images were registered to the reference histological
260images contained in the Allen Brain Atlas. In this paper we have
261adapted the algorithm to directly map the MSI data onto the
262histological image of a proximal tissue section.

263■ RESULTS AND DISCUSSION
264To automatically coregister MSI with histology, we have
265 f1developed the pipeline shown in Figure 1. The key elements of

Figure 1. Proposed pipeline to automatically align MSI data to their
histological image. The method is generic as it can be applied to
different tissues and MSI data sets recorded using different types of
mass spectrometers and mass spectrometers equipped with different
ion sources.
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266 the pipeline are (i) mapping the MSI data set to a 3D space
267 using tSNE to determine the spatial correspondences that are
268 then used for the registration, (ii) image registration algorithm
269 [for MSI and histology of the same tissue section, a rigid
270 transformation is used; for MSI and histology of adjacent
271 sections, elastic deformation is permitted to account for small
272 differences in the sizes of the histological regions and for small
273 artifacts introduced during the sectioning/mounting procedure
274 (e.g., folds, tears)], and (iii) statistical measurement of MSI and
275 histology fitness−mutual information22 to overcome the
276 inherent independency of the intensity distributions of the
277 tSNE and histological images.

f2 278 Figure 2 shows an example of an MSI data set in which the
279 mass spectral signatures are clearly associated with the
280 underlying histology. A thyroid cancer tissue section was first
281 prepared for protein MALDI MSI via on-tissue tryptic digestion
282 and then measured using an UltrafleXtreme MALDI-TOF/
283 TOF instrument. Following MSI data acquisition and removal
284 of excess MALDI matrix, the tissue was hematoxylin and eosin
285 (H&E) stained and a high-resolution optical image recorded.
286 Figure 2 shows the average mass spectrum, the original
287 histological image, and example MS images. It can be seen that
288 the MSI experiment detected a large number of proteolytic
289 peptide ions, many of which were localized to distinct
290 histological regions of the thyroid cancer tissue section. Despite
291 the high contrast of the MSI images, it is far from
292 straightforward to determine which of the distinct MS images
293 best follow the tissue section’s histology.

294In agreement with Fonville et al.,15 we found that a 3D
295representation of the MSI data using tSNE, and visualized as an
296RGB image, reproducibly produces summary images that
297exhibit clear correspondences with the tissue section’s
298histology. Accordingly, we surmised that the tSNE map could
299be used to automatically guide the registration algorithm for
300finding the optimal transformation to spatially align MSI with
301histology. The original histological image of the thyroid cancer
302tissue section was preprocessed to exclude the background,
303normalize contrast, and exclude potential image artifacts that
304 f3might bias the registration algorithm16(Figure 3a). The tSNE
305representation of the MSI data is shown in Figure 3b; the color
306coding clearly highlights different histological regions. In this

Figure 2. MALDI MSI analysis of a human oncocytic follicular thyroid cancer tissue using on-tissue tryptic digestion and measured using MALDI-
TOF/TOF. The MSI data contain hundreds of proteolytic peptide ions, many of which exhibit highly structured distributions (top row). A
comparison with the histological image (tissue section H&E stained after the MSI experiment) reveals that many ions are associated with specific
histological features.

Figure 3. Coregistration of MALDI MSI data and histological image of
thyroid cancer tissue: (a) preprocessed histological image; (b) low-
dimensionality representation of the high-dimensional MALDI MSI
data using tSNE (which is used as the moving image in the registration
process); (c) fusion resultoverlay of the processed histological
image and registered tSNE results.
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307 example the histology image and MSI data were from the exact
308 same tissue section. The tSNE image could thus be registered
309 using a rigid registration (scale, translation, rotation) and using
310 the mutual information as the registration metric (as mutual
311 information can accommodate the different intensity distribu-
312 tions and color scales of the images). The high accuracy of the
313 registration can be seen in Figure 3c, in which the registered
314 tSNE image (using the hot color map) is placed on top of the
315 gray scale processed histology image.
316 To provide examples of the general applicability of the
317 approach for different MSI platforms, different ionization
318 methods and different application areas, three mouse brain
319 tissue sections, which were sectioned differently (i.e., coronal
320 and sagittal) and analyzed in different mass spectrometers are

f4 321 shown in Figure 4. The top row shows a high spatial resolution
322 SIMS MSI analysis, using a TOF-SIMS instrument, of the

323cerebellum region of a sagittal tissue section. The middle row
324shows a protein MALDI MSI analysis, using linear MALDI-
325TOF, of a coronal tissue section of a mouse brain. The bottom
326row shows a lipid MALDI MSI analysis, using a MALDI ion
327mobility TOF instrument, of a sagittal tissue section of a mouse
328brain. In each case tSNE of the MSI data reveals clearly
329distinguishable anatomical features, for example, cerebellar
330cortex (Figure 4b), corpus callosum (Figure 4e), and
331cerebellum (Figure 4h). The anatomical landmarks generated
332by the tSNE representations enable the MSI data sets to be
333registered to the histology images (Figure 4c,f,i). Overlaying
334the tSNE images on top of the histology images demonstrates
335the high alignment accuracy. Additional examples of the
336registration of SIMS, MALDI-TOF, and MALDI ion mobility
337TOF are included in Figure S-1 (Supporting Information).

Figure 4. Coregistration of MSI data sets and their histological images. The data sets are from different mice and different mass spectrometers
(SIMS, MALDI-TOF, and MALDI-Synapt). tSNE representations of the MSI data sets (second column) show clear spatial correspondences with
their associated histological images (first column), enabling registration to be performed successfully (third column; for improved clarity the
histological image and tSNE representation are shown in gray scale and hot color scale, respectively).

Figure 5. Comparison between semiautomatic and automatic coregistration of mouse brain data sets: (a) preprocessed histology, (b) original spatial
distribution of a selected mass (m/z = 1241 Da), (c) fusion result combining the histological image and the MS image (coregistration was performed
semiautomatically and was based on manually selected fiducial markers), (d) fusion result combining the histological image and the MS image
(coregistration was performed automatically using tSNE), (e) histogram of correlation coefficients between 60 MSI data sets of coronal mouse brain
tissue sections automatically registered using the tSNE-based pipeline and semiautomatically registered using FlexImaging. Figure S-4 (Supporting
Information) shows the results of the automatic registration for all 60 tissue sections.
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338 The SIMS MSI and histology data shown in Figure 4 were of
339 adjacent sections, so there were minor differences between the
340 histology image and the MSI data due to the manual nature of
341 mounting the thin tissue sections onto the target plate. In this
342 instance an elastic registration step was necessary to account for
343 the local deformations between the MSI data and the histology
344 image (Figure S-2, Supporting Information).
345 To quantify the accuracy of the registration, a set of control
346 points were selected in the histological and MSI images. Figure
347 S-3 (Supporting Information) shows the control points selected
348 for coronal mouse brain tissue sections as well as the results of
349 the registration. After registration the errors ranged from under
350 10 μm for the SIMS data set to approximately 40 μm for the
351 MALDI-TOF analysis of mouse brain tissue sections to 80 μm
352 for MALDI-TOF analysis of tryptic peptides in thyroid cancer
353 tissue. In each case the registration accuracy was sufficient that
354 any errors were less than the size of a single MSI pixel (see
355 Table 1).
356 The tSNE-based automatic registration algorithm was then
357 compared to the only commercial package currently available
358 and de facto standard for registering histology and MSI data,
359 namely, FlexImaging from Bruker Daltonics. FlexImaging is
360 Bruker’s MSI data acquisition and data analysis software and is
361 only compatible with Bruker MALDI mass spectrometers. To
362 record MSI data using FlexImaging, the mass spectrometer’s
363 sample stage is first aligned to an optical image of the MALDI-
364 matrix-coated tissue. This alignment is performed by manually
365 selecting features in the matrix-coated-tissue image and
366 manually selecting the corresponding features in the mass
367 spectrometer’s sample visualization system. In this manner the
368 mass spectrometer’s coordinate system, and thus the MSI data,
369 is aligned to the matrix-coated-tissue image. After MSI data
370 acquisition, the histology image is then registered to the MSI
371 data through the matrix-coated-tissue image by selecting
372 common features in the high-resolution histology image and
373 the matrix-coated-tissue image.

f5 374 Figure 5a shows the preprocessed high-resolution optical
375 image of a coronal tissue section of a mouse brain and Figure
376 5b the spatial distribution of a selected mass (m/z = 1241).
377 FlexImaging was then used to align the histology image and the
378 MSI data (Figure 5c), and the tSNE-based automatic
379 registration algorithm was applied to the same data (Figure
380 5d). Visual inspection of the automatic and semiautomatic
381 coregistration results shows a close consensus in the MS
382 distribution with respect to the tissue’s anatomy. To validate
383 the automatic registration algorithm, its results were compared
384 with those from FlexImaging’s semiautomatic registration for
385 data sets from 60 coronal mouse brain tissue sections spanning
386 three different molecular classes (20 metabolite MSI data sets,
387 20 peptide MSI data sets, and 20 protein MSI data sets). Parts
388 a−l of Figure S4 (Supporting Information) visualize the results
389 of the tSNE-based automatic registration algorithm. The
390 Pearson correlation between the automatically registered results
391 and those from the FlexImaging semiautomatic method was
392 then calculated. A histogram of the resulting correlation
393 coefficients, Figure 5e, demonstrates excellent agreement
394 between the two methods, with a mean correlation coefficient
395 of 0.97 and a standard deviation of 0.01. Figure S-4m shows the
396 histogram of the Dice coefficients, another image overlap
397 metric that again confirms the high quality of the automatic
398 registration algorithm.
399 We have developed an automatic generic technique to
400 coregister MSI data sets to their histological images; we have

401demonstrated its applicability to MSI data sets measured on
402different mass spectrometers using different ionization
403mechanisms and different tissue samples and validated the
404results using a large series of mouse brain tissue sections. The
405tSNE representation plays a vital role in the registration by
406summarizing the spatiomolecular organization of the tissue,
407which has clear correspondences with the tissue section’s
408histology. While even a single tSNE dimension was sufficient to
409reveal the spatiomolecular organization, the 3D tSNE map was
410significantly smoother and so was used here (Figure S-5,
411Supporting Information).
412The computational and memory requirements of the original
413tSNE algorithm,14 as used by Fonville et al.,15 scale with the
414square of the number of data points. An MSI data set of just
415200 × 100 pixels, and 500 detected peaks, contains 10 million
416data points. Accordingly, tSNE analyses could run very slowly.
417A new implementation, termed the Barnes−Hut implementa-
418tion,24 scales as N log N for computation and N for memory
419and thus enables tSNE of MSI data sets to be run much more
420practically. Freely available code, for many different platforms,
421is available from the tSNE Web site.25

422All the experiments referred to here were recorded using
423MALDI or SIMS, ionization methods that generate a
424substantial background signal and so are not well suited to
425previously reported methods based on the rigid registration of
426binary images.6 Figure S-6 (Supporting Information) shows a
427comparison of the registration results for MALDI MSI of a
428coronal mouse brain tissue section using the binary image
429registration method with those obtained using tSNE. It is
430immediately apparent that there is a translation error in the
431registration performed using binarized images (due to the
432background in MALDI MSI data sets). Furthermore, high
433spatial resolution analyses such as those presented in Figure
4344a−c often focus on specific regions of tissue rather than the
435entire section because of the measurement time/memory
436demands of the experiment. These MSI data sets do not
437contain the tissue border regions necessary for the binary image
438registration method.6 Finally, binary images do not contain the
439internal structures needed for elastic registration algorithms to
440align MSI and histological data from adjacent tissue sections
441(Figure 4a−c; Figures S-1 and S-2, Supporting Information).
442This automatic histology−MSI registration pipeline will
443enable joint histology−MSI experiments to be performed
444irrespective of the ionization method or mass analyzer used to
445acquire the MSI data. Accordingly, virtual microdissection can
446be used to extract region-specific mass spectra from disease
447entities, e.g., tumors, to enable biomarker discovery experi-
448ments utilizing the full repertoire of MSI approaches.
449Furthermore, by combining the automatic histology−MSI
450registration pipeline with that previously reported by
451Abdelmoula et al.,16 MSI data sets of mouse brain tissue
452sections can be automatically aligned to the Allen Brain Atlas.26

453The Allen Brain Atlas alignment routine requires the MSI data
454set and its associated histology to already be registered to each
455other. Previously, this was performed using fiducial markers in
456the Bruker Daltonics FlexImaging software. However, this
457limited the approach to MALDI MSI data recorded using
458instruments from Bruker Daltonics. The generic and automated
459histology−MSI coregistration pipeline reported here means
460that all MSI data may be analyzed in the context of the
461reference atlas and gene expression data contained in the Allen
462Brain Atlas.
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463 tSNE can also be used as a distinct classification tool.27 In a
464 process termed “automatic classification of cellular expression
465 by nonlinear stochastic embedding” (ACCENSE), Shekhar et
466 al. utilized tSNE and a density-based partitioning of the tSNE
467 space to demarcate T-cells into groups on the basis of the
468 expression levels of 35 proteins, measured using mass
469 cytometry.27 The application of a similar density-based
470 partitioning to the results of a tSNE analysis of MSI data
471 would enable the identification of clusters without the need to
472 predefine their number (as is necessary in NMF, PLSA, and k-
473 means clustering). It is expected that the combination of
474 automatic MSI−histology alignment reported here and a
475 classifier (whether based on tSNE or another classification
476 algorithm) will enable the automated identification of specific
477 regions/organs of interest and thereby the automated
478 extraction of their mass spectral profile. Such capabilities
479 would greatly facilitate the biomedical application of MSI,
480 whether for clinical biomarker discovery experiments or
481 quantification of the level of a drug in different animal organs.

482 ■ CONCLUDING REMARKS
483 MSI experiments can now be performed using a diverse array of
484 ionization methods and mass analyzers that offer comple-
485 mentary capabilities. The development of the imzML data
486 standard28 and open source data analysis tools29,30 now enable
487 the MSI data from different platforms to be more readily
488 compared and combined, the latter for greater biomolecular
489 depth of coverage. The automated generic MSI−histology
490 registration tool reported here represents an important
491 development in the efforts to increase the impact, accessibility,
492 and intercomparison of MSI data because it delivers one of the
493 principal strengths of MSI for biomedical analysis (the ability to
494 acquire cell/region-specific mass spectra from tissues with
495 complex histologies) for any combination of mass analyzer and
496 ionization method.
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