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Abstract

Over the last decade, several studies on texture analysis propose to model texture as a probabilistic pro-
cess that generates small texture patches. In these studies, texture is represented by means of a frequency
histogram that measures how often texture patches from a codebook occur in the texture. In the codebook,
the texture patches are represented by, e.g., a collection of filter bank responses. The resulting represen-
tations are called textons. A recent study claims that textons based on normalized grayvalues outperform
textons based on filter responses (such as MRS filter responses), despite the weaknesses of such image-
based representations for image modelling. The paper investigates this claim by comparing image-based
textons with textons obtained using the complex wavelet transform. The complex wavelet transform dif-
fers from the MRS and similar filters in that it employs filters with relatively low support and in that it
constructs image representations with less redundancy. Furthermore, the paper investigates to what extent
image-based textons are susceptible to 2D rotations of the texture. It compares image-based textons with
rotation-invariant textons based on spin images and polar Fourier features. The performance of the new
types of textons is evaluated in classification experiments on the CUReT texture dataset. The results of our
experiments with the complex wavelet transform support the claim that filter-based textons do not outper-
form their image-based counterparts. Furthermore, the results of our experiments reveal that image-based
textons are very susceptible to 2D rotations of the texture, making image-based textons unapplicable to
real-world texture classification problems. We show that strong rotation-invariant texton-based texture
classifiers can be constructed by means of textons based on spin images and polar Fourier features.

1 Introduction

Texture analysis is a task in computer vision that aims at representing texture in a model that is invariant
to changes in the visual appearance of the texture. The visual appearance of a single texture can change
dramatically under the influence of, e.g., lighting changes and 3D rotations. Traditional approaches to texture
analysis often model texture as a Markov Random Field [6], which is a model that is widely used in machine
learning. Another very popular approach to texture modelling is to analyze statistics of the responses of
large filter banks [7, 11]. A number of recent studies propose to model texture as a probabilistic process that
generates small texture patches according to a probability distribution over all possible texture patches [2,
4, 10, 14, 15]. In these studies, texture classification is performed with the help of a texton codebook that
is constructed by performing vector quantization on a set of randomly selected textons. Textons are the
representations of small texture patches by, e.g., a collection of filter bank responses, and can be viewed
upon as the textural counterpart of phonemes and graphemes. In texton-based texture classifiers, a texture is
represented by means of a texton frequency histogram that measures the relative frequency by which textons
from the codebook appear in the texture. Texture classification is performed by means of classifiers, such
as nearest neighbor classifiers [14] or Support Vector Machines [2], that are trained on the texton frequency
histograms. An application of such a texture classifier to defect detection is presented in [16].

In most studies, textons consist of a collection of filter bank responses [2, 4, 10, 14]. In [15], the authors
claim that textons based on normalized grayvalues outperform textons based on filter bank responses. Their
claim is supported by experiments in which such image-based textons are compared with textons based on
responses of a filter bank specially designed for texture analysis (the so-called MRS filter bank). An image-
based texton is a concatenation of the normalized grayvalues in the texture patch. The results in [15] reveal
the image-based textons to outperform textons based on the MRS filter bank responses. This is a surprising
result, because image-based representations are generally considered to be inappropriate for classification.



For instance, image-based representations are sensitive to noise and to changes in orientation and scale.

In the paper, we investigate the claim in [15] by comparing image-based textons with textons based on
the complex wavelet transform [9]. We selected the complex wavelet transform because it has theoretical
advantages over the MR8 filter bank that may mitigate the weaknesses of filter-based textons. Furthermore,
we investigate to what extent image-based textons suffer from the presence of 2D rotations in the texture
images and propose two new (rotation-invariant) textons based on spin images and on polar Fourier features.
We investigate the performance of the three new textons in two experiments on the CUReT texture dataset.
The results of our experiments support the claim that filter-based textons do not outperform their image-
based counterparts, and show that our rotation-invariant textons are capable of overcoming the susceptibility
to the presence of 2D rotations of texton-based texture classifiers.

The outline of the remainder of the paper is as follows. In section 2, we discuss texton-based texture
classifiers in more detail. Section 3 presents the three new texton representations that we investigated. Our
experiments with the new texton representations are discussed in section 4. The results of the experiments
are discussed further in section 5. In section 6, we present conclusions and directions for future work.

2 Texton-based texture classifiers

Texton-based texture classifiers classify textures based on their texton frequency histogram. A schematic
overview of a texton-based texture classifier is given in Figure 1. The construction of texton-based texture
classifiers consists of three main stages: (1) construction of a texton codebook, (2) computation of a texton
frequency histogram, and (3) training of the classifier based on the texture frequency histograms. The first
two stages are described in more detail below. The third stage can be implemented by means of, e.g., a
nearest neighbor classifier [14] or a Support Vector Machine [2].
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Figure 1: Schematic overview of the texton-based texture classifier.

2.1 Codebook construction

A texton codebook is a collection of textons that can be used to characterize texture images. In the construc-
tion of a texton codebook, small texture patches are extracted from random positions in the texture images.
The pixel values of the texture patches are normalized in order to make them invariant to changes in lighting
conditions. Textons are obtained by converting the texture patches to an appropriate image representation
(such as a collection of filter bank responses or a concatenation of normalized pixel values). A part of a
texton codebook is constructed by performing vector quantization (e.g., using k-means clustering or Ko-
honen maps) on a set of textons extracted from texture images that are assigned to a single texture class.
A complete texton codebook is constructed by repeating this process for every texture class in the texture
dataset. If the texture dataset is a proper subset of real-world textures, the texton codebook contains the most
important textons that occur in real-world textures.

2.2 Texton frequency histogram

In texton-based texture classifiers, texture is viewed upon as a probabilistic generator of textons. The un-
derlying probability distribution of the generator is estimated by means of a texton frequency histogram that
measures the relative frequency of textons from the codebook in a texture image. A texton frequency his-
togram is constructed from a texture image by scanning over the texture image and extracting small texture
patches. The small texture patches are converted to the image representation that is used in the codebook in
order to obtain a collection of textons. Each extracted texton is compared to the textons in the codebook in
order to identify the most similar texton from the codebook, and the texton frequency histogram bin corre-
sponding to this texton is incremented. After normalization, the texton frequency histogram forms a feature
vector that models the texture, and can be used in order to train a classifier.



2.3 Image-based textons

In most texton-based texture classifiers [2, 4, 10, 14], textons are represented by means of a collection
of filter bank responses obtained from large filter banks such as the MR8 filter bank or the Leung-Malik
filter bank!. However, in [15], it was shown that image-based textons outperform textons based on filter
responses, leading to questions about the necessity of applying filter banks for the analysis of texture. Three
main reasons for the relative strong performance of image-based textons were suggested by the authors.
First, the use of filter banks reduces the number of textons that can be extracted from a texture image. This
reduction is a consequence of the large support of filter banks; the number of patches that can be extracted
from a, say, 200 x 200 pixel texture image is significantly reduced when this image is convolved with a
50 x 50 filter. The presence of a reduced number of textons affects the quality of the texton frequency
histogram estimations, leading to inferior generalization performances. Second, the large support of filter
banks leads to small errors in the localization of edges. Imprecise edge localization may significantly change
the geometry of the textons, leading to errors in the estimation of the texton frequency histogram. Third, the
application of most filters leads to some blurring on the texture images, which is the result of the Gaussian
envelope in these filters. The blurring might remove local details in the textons, that are of interest in the
classification of the texture.

The three main reasons why image-based textons are not expected to yield good classification performances
are as follows. First, image-based textons do not contain information on the presence of different orientations
in the texture. The measurement of edge orientations is known to be important in human vision [8]. Second,
image-based textons are sensitive to the presence of noise in the image. Third, image-based textons are
susceptible to the presence of 2D rotations in the texture images. In the next section, we propose three new
types of textons that attempt to mitigate or resolve these weaknesses.

3 Three new texton representations

In this section, we propose three new texton representations: a representation based on the complex wavelet
transform (subsection 3.1), a representation based on spin images (subsection 3.2), and a representation
based on polar Fourier features (subsection 3.3). The texton representation based on the complex wavelet
transform is proposed in order to further investigate the claim that image-based textons outperform textons
based on filter bank responses. Because of its relatively low redundancy and small support, the complex
wavelet transform may overcome the drawbacks of MRS filter banks. The texton representations based on
spin images and polar Fourier features are proposed in order to construct texton-based texture classifiers that
are invariant to changes in the orientation of the texture images.

3.1 Complex wavelet transform

The wavelet transform expands a signal into a collection of frequency components (similar to the Fourier
transform). Unlike the Fourier transform, the wavelet transform does so by using a collection of localized
basis functions in order to resolve the Gibbs effect from which the Fourier transform suffers. In practice, the
wavelet transform is implemented as a dyadic filter tree in which a low-pass filter g and a high-pass filter
h are employed. Both filters are applied on the signal, the low-pass filter response is downsampled, both
filters are applied on the result, and this process is iterated. If both filters meet certain requirements (such
as orthogonality of the filters), the responses of the high-pass filters provide the wavelet coefficients. An
extensive introduction on wavelet theory can be found in [3].

The complex wavelet transform (CWT) is capable of capturing more phase information than the traditional
wavelet transform by the use of complex filters, and thereby, it provides approximate shift invariance to the
wavelet transform [9]. The CWT is implemented by means of a dual dyadic filter tree, of which a one-
dimensional version is shown schematically in Figure 2. In the figure, square boxes indicate a filtering with
either the high-pass filter h; or the low-pass filter g;, and | 2 indicates a downsampling of the signal by 2.
In addition to the restrictions on the filters in the traditional wavelet transform, the filters in the two branches
of the filter tree should form Hilbert pairs. In other words, filter g; should be the Hilbert transform of filter

I'The MRS filter bank consists of six orientation-sensitive filters at three different scales. The responses of the MRS filter bank are
given by the maximum responses of the complete filter bank over all scales. In addition to the orientation-sensitive filters, the MR8
filter bank contains a Gaussian and a Laplacian of Gaussian filter. The Leung-Malik filter bank consists of six orientation-sensitive
filters, a Gaussian filter, and a Laplacian of Gaussian filter.



Figure 2: Complex wavelet transform filter tree.

go, and filter i1 should be the Hilbert transform of filter hg. If this requirement is met, the responses of the
filters can be shown to complement each other, leading to a lower susceptibility to shifts in the signal. In
the 2D case, the wavelets in the CWT show great resemblance to orientation-sensitive filters such as Gabor
filters, as is illustrated in Figure 3. However, the CWT has three important advantages over Gabor (and
related) filters. First, CWT coefficients are less redundant than Gabor wavelet coefficients (the 2D CWT is
only four times complete), leading to an image representation of lower dimensionality that can be computed
more efficiently. Second, the support of the filters that are used in the CWT is generally small, allowing
for a better estimation of the texton generation distribution and for an additional computational advantage.
Third, the CWT has an inverse transform, which implies that the original image can be reconstructed from
the wavelet coefficients for, e.g., visualization purposes. In our texton-based texture classifiers that employ
the CWT, we perform the complex wavelet transform on the normalized texture patches using the filters
described in [1].

Figure 3: Wavelets corresponding to the complex wavelet transform. The upper row represents the real parts
of the six wavelets, whereas the middle row represents the imaginary parts of the wavelets. The magnitude
of the filters is depicted in the bottom row, revealing that the real and imaginary parts of the wavelets are
complementary. The wavelets were obtained using the filters described in [1].

3.2 Spin images

Spin images estimate the joint intensity-radius distribution of an image in a coarse histogram [12]. In the
construction of a spin image, the distance of every pixel to the center of the image (i.e., the radius) is
computed. The radiuses and the corresponding pixel values are quantized and binned in a joint histogram.
The construction of spin images is illustrated in Figure 4. The main advantage of the use of spin images is
that they are invariant to changes in the orientation of the image.

In our texton-based texture classifiers, we construct spin images with 8 intensity bins from the normalized
texture patches. The number of radius bins is set to the width (or height) of the texture patches in pixels. We
estimate the texton frequency histograms using an overcomplete texture patch basis (i.e., there is overlap in
the texture patches).
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Figure 4: Example of the construction of a spin image.

3.3 Polar Fourier features

Polar Fourier features are based on the observation that the magnitude of the Fourier transform of a histogram
is invariant under circular shifts, because all phase information is in the sign of the Fourier coefficients [13].
In the computation of polar Fourier features, the image is converted to polar space. In the polar space, one
axis represents the distance to the center of the image, whereas the other axis represents the angle from the
baseline (which is the horizontal line through the center of the image). As a result, a rotation of the original
image leads to a circular shift in the ’distance-bands’ of the polar image. The polar image is made rotation-
invariant by computing the magnitude of the Fourier transform of every ’distance-band’ in the polar image.
The construction of polar Fourier features is illustrated in Figure 5.

In our texton-based texture classifiers using polar Fourier features, the texton frequency histograms are
constructed using an overcomplete basis of normalized texture patches (i.e., there is overlap in the texture
patches).
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Figure 5: Example of the construction of polar Fourier features.

4 Experiments

In the previous section, we presented three new texton representations that may overcome some of the draw-
backs of image-based textons. This section investigates the performance of the new texton representations
on two texture classification tasks: (1) a task in which there are no 2D rotations on the textures, and (2) a
task in which the classifier has to deal with 2D rotations of the textures. The setup of our experiments is
described in subsection 4.1. Subsection 4.2 presents the results of our experiments.

4.1 Experimental setup

In order to evaluate the quality of the textons presented in the previous section, we performed texture classifi-
cation experiments on the CUReT dataset [5]. The CUReT dataset contains images of 61 different materials
that were photographed under 205 different viewpoints. The differences in viewpoints lead to a large vari-
ability in the visual appearance of the same material, as is illustrated in Figure 6. From the 205 images, we
selected the 123 images that allow for the extraction of a texture image of 200 x 200 pixels. The extracted
texture images are converted to grayscale images, since we are only interested in the textural information
in the images. The texton codebooks were constructed by performing k-means clustering on 5,000 textons,
that were obtained by random selection from the trainingset. In our experiments, we used a value of & = 10,
leading to texton codebooks consisting of 610 textons. In the experiments with image-based textons and
textons based on spin images, we performed experiments with texture patches of size 3 x 3 to 8 x 8 pixels.



The experiments with textons based on CWT features and polar Fourier features were performed only with
texture patches of 4 x 4 and 8 x 8 pixels, because wavelet and Fourier transforms require a signal length that
is a power of 2. In our experiments, the classification is performed by a 1-nearest neighbor classifier. The
generalization performance of the classifiers is evaluated using 10-fold cross validation. Our experimental
setup is roughly similar to the setup employed in [15].

We evaluated the performance of the trained classifiers in two settings: (1) a setting in which there are no
changes in the orientations of the texture images and (2) a setting in which the texture classifier has to deal
with 2D rotations of the texture images. In the latter setting, we train the classifiers on normal texture im-
ages, and test the classifiers on texture images that are rotated by 90 degrees in clockwise direction. We opt
for a rotation of 90 degrees, because a rotation of 90 degrees does not introduce artefacts into the texture
images.

Figure 6: Visual appearance of a texture photographed under different lighting conditions.

4.2 Results

In the previous subsection, we described the setup of our experiments. This subsection presents the results of
the experiments. The results are divided into two parts: results of experiments in which there are no changes
in the texture orientations (subsubsection 4.2.1) and results of experiments in which the texture images in
the test set have a different orientation (subsubsection 4.2.2).

4.2.1 Fixed-orientation texture classification

In Table 1, we present the generalization errors of 1-nearest neighbor classifiers that were trained on texton
frequency histograms using the four texton representations that we discussed. The table presents generaliza-
tion errors of classifiers trained on image-based textons, textons based on the complex wavelet transform,
textons based on spin images, and textons based on polar Fourier features. In the experiments, the texture
images were presented in their original orientation.

From the results presented in the table, we can make three observations. First, the results in the tables re-
veal that image-based textons perform very strong. Our results with image-based textons are comparable
to those presented in [15]. The performance of CWT-based textons is comparable to those of image-based
textons, and appears to be better than the performance of the textons based on MRS filter bank responses
presented in [14]. Second, we observe that the use of textons based on spin images degrades the performance
of texton-based texture classifiers with approximately 3%. Third, we observe that textons based on polar
Fourier features perform better than those based on spin images. Textons based on polar Fourier features
almost perform comparable to image-based textons (especially for larger patch sizes).

Patch size Image CWT Spin image Polar Fourier
3x3 0.0264 £ 0.0053 — | 0.0649 £ 0.0100 -
4x4 0.0206 £ 0.0064 | 0.0260 £ 0.0056 | 0.0546 + 0.0073 | 0.0466 £+ 0.0072
5x5 0.0204 £ 0.0062 — | 0.0509 £0.0121 -
6 x 6 0.0177 £ 0.0044 — | 0.0530 £0.0123 -
TxT 0.0195 £ 0.0057 — 1 0.0516 £ 0.0102 -
8 x 8 0.0187 £ 0.0051 | 0.0179 £ 0.0038 | 0.0530 + 0.0085 | 0.0243 4+ 0.0070

Table 1: Generalization errors of texton-based texture classifiers (fixed orientation).




Patch size Image CWT Spin image Polar Fourier
3x3 0.5369 £ 0.0143 — | 0.0622 £ 0.0099 -
4 x4 0.5597 £ 0.0119 | 0.6330 £ 0.0151 | 0.0541 +0.0082 | 0.0630 £+ 0.0121
5x5 0.6104 £ 0.0153 — | 0.0540 £ 0.0061 -
6 x 6 0.6512 £ 0.0050 — | 0.0543 £ 0.0093 -
TxT 0.6778 £0.0144 — | 0.0523 £ 0.0062 -
8 x 8 0.6971 £0.0179 | 0.6552 £ 0.0216 | 0.0520 & 0.0107 | 0.0253 4 0.0062

Table 2: Generalization errors of texton-based texture classifiers (variable orientation).

4.2.2 Variable-orientation texture classification

In Table 2, we present the results of 1-nearest neighbor classifiers that were trained on normal texture images,
but tested on texture images that were rotated 90 degrees in a clockwise direction. The table presents the
generalization errors of classifiers based on the four texton types.

From the results in Table 2, we observe that the use of textons that are not rotation-invariant strongly degrades
the performance of texton-based texture classifiers when 2D rotations are present in the texture images. The
presence of 2D rotations in the texture images causes an increase of the generalization error by 50% to
70%. The degradation in the performance of the classifier increases with the size of textons that are used.
In constrast to image-based and CW'T-based textons, the rotation-invariant textons do not suffer from the
presence of 2D rotations in the test data.

5 Discussion

In the previous section, we presented the results of our experiments with three new texton representations on
the CUReT dataset. In this section, we discuss the two main observations that can be made from the results
of our experiments.

First, the performance of textons based on the complex wavelet transform supports the claim in [15] that
the popular use of filter responses in texture classification is debatable. We surmise that the main disadvan-
tage of the filter-based textons in [15] is the reduction of the number of textons (due to the large support
of the filters). Since our textons based on the complex wavelet transform do not suffer from this weakness,
they outperform the MR8-based textons. An additional advantage of our CWT-based textons is the low
redundancy of the complex wavelet transform, which reduces the dimensionality of the textons. Despite the
advantages of the complex wavelet transform, CWT-based textons do not outperform image-based textons,
which indicates that imprecise edge localization is an important problem in filter-based textons.

Second, the results of our experiments show that current texton-based texture classifiers are very sensitive to
the presence of 2D rotations in the texture images. The results show that our rotation-invariant textons might
degrade the accuracy of the classifier somewhat, but that this accuracy degradation is very limited. Polar
Fourier features almost perform comparable to their image-based counterparts that are sensitive to changes
in the orientation of the texture. A disadvantage of our rotation-invariant texture classifiers is that they model
each ’distance band’ separately in a rotation-invariant model. As a result, information on the alignment of
the distance bands is lost. Our rotation-invariant texture classifiers may be improved by incorporating align-
ment information in the rotation-invariant features. Most likely, our texture classifiers are also very sensitive
to the presence of scale changes in the texture images?.

6 Conclusions

Texton-based texture classifiers form a new alternative to traditional texture classification approaches such as
Markov Random Fields or filter bank models. Recent work on texton-based texture classifiers suggests the
use of image-based textons over filter-based textons. We investigated this claim by performing experiments
with textons based on the complex wavelet transform, which has a number of theoretical advantages over

2The reader should note that the texton-based texture classifiers are invariant to the presence of 3D rotations, because the training
data contains textures that are photographed under a large number of 3D rotations.



large filter banks (such as the MRS filter bank). The results of our experiments support the claim that the
popular use of filter bank responses in texture classification is debatable, although the image-based textons
did not outperform our CWT-based textons.

One of the main disadvantages of current texton-based texture classifiers is that they are very sensitive
to changes in the orientation of the texture. We empirically evaluated this sensitivity, and encountered
performance drops of more than 50% under the influence of 2D rotations in the texture images. In order
to resolve this problem, we proposed the use of rotation-invariant textons based on spin images and polar
Fourier features. Our experiments show that rotation-invariant texture classifiers based on spin images and
polar Fourier features perform strongly. The results show that the performance of textons based on polar
Fourier features is almost similar to the performance of their image-based counterparts.

Future work focuses on the development of texton-based texture classifiers that are not only invariant to
changes in orientation, but also to changes in scale. Invariance to scale changes could be obtained by
constructing texton frequency histogram for a number of scales in the scale space, and aligning the resulting
models by maximizing the frequency histogram similarities. The incorporation of scale invariance into our
texton-based texture models would lead to texture models that are invariant to all main variations in texture
images. In addition, texture classification results could be improved by employing mixture models instead
of a texton codebook, or by the use of multi-scale textons.
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