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Abstract

The Gaussian Process Latent Variable
Model (GPLVM) is a non-linear variant of
probabilistic Principal Components Anal-
ysis (PCA). The main advantage of the
GPLVM over probabilistic PCA is that
it can model non-linear transformations
from the latent space to the data space. An
important disadvantage of the GPLVM is
its focus on preserving global data struc-
ture in the latent space, whereas preserv-
ing local data structure is generally consid-
ered to be more important in dimensional-
ity reduction. In this paper, we present an
extension of the GPLVM that encourages
the preservation of local structure in the la-
tent space. The extension entails the intro-
duction of a prior distribution over the pa-
rameters of the GPLVM that measures the
divergence between the pairwise distances
in the data space and the latent space. We
show that the proposed extension leads to
strong results.

1 Introduction

Machine learning techniques are often hampered
by the high dimensionality of the data on which
they are trained. For instance, the number of
weights in a neural network typically grows very
fast with the dimensionality of the input data. To
address this problem, a large number of techniques
have been proposed that reduce the dimensional-
ity of the input data. See for a review, e.g., (Lee
and Verleysen, 2007). The rationale behind these
dimensionality reduction techniques is that the in-
put data is typically not uniformly distributed over
the data space. For instance, consider the space
of images of size 512 × 512 pixels. If we draw
samples from a uniform distribution defined over
this 262, 144-dimensional space, the probability of

sampling a natural image is almost zero. Only
small parts of the image space are thus filled with
natural images. Moreover, the strong correlations
between individual image pixels suggest the num-
ber of parameters needed to account for all prop-
erties of the data is much smaller than 262, 144.
One can thus think of images and many other high-
dimensional datasets as lying on a non-linear man-
ifold of lower dimensionality that is embedded
into the data space. The aim of dimensionality re-
duction techniques is to transform the input data to
a low-dimensional latent space in such a way that
the structure of the manifold is retained.
A particularly interesting type of dimensionality
reduction techniques are probabilistic latent vari-
able models. Probabilistic latent variable models
define a generative model in which a datapoint xn

is generated from a distribution that is conditioned
on a latent variable zn and on the parameters of
the model. The parameters of the model are typi-
cally learned using maximum likelihood learning,
although a fully Bayesian treatment may be used
as well (Bishop, 1999). An important advantage of
latent variable models is that, in contrast to other
dimensionality reduction techniques, they provide
a probabilistic mapping from the latent space to
the data space that is typically smooth. Such a
probabilistic mapping can be employed to sample
new data from the model distribution.
A well-known latent variable model is proba-
bilistic Principal Components Analysis (PCA),
which is a linear-Gaussian model for which the
maximum-likelihood solution is identical to the
solution of ‘normal’ PCA (Tipping and Bishop,
1999). The main limitations of probabilistic PCA
are that (1) it can only learn linear mappings be-
tween the latent space and the data space and (2)
it does not retain the local structure of the data
very well in the latent space. Lawrence (2005) ex-
tended the probabilistic PCA model to the Gaus-
sian Process Latent Variable Model (GPLVM) to



address the first limitation: the GPLVM is capa-
ble of modeling non-linear mappings between the
latent space and the data space. However, the
GPLVM does not address the second limitation of
probabilistic PCA: in both probabilistic PCA and
the GPLVM, there is no emphasis on preserving
small pairwise distances between datapoints in the
latent space. Instead, the GPLVM primarily fo-
cuses on retaining global data structure in the la-
tent space. The focus of the GPLVM on retain-
ing global data structure in the latent space con-
flicts with the popular belief that preserving local
data structure is most important in dimensionality
reduction (Tenenbaum et al., 2000; Roweis and
Saul, 2000; van der Maaten and Hinton, 2008).
By preserving the local structure of the data, non-
linear low-dimensional data manifolds can be suc-
cessfully extracted from the data space and em-
bedded in a low-dimensional latent space. Herein,
some of the global data structure is lost, however,
this global structure is generally not of relevance
in typical learning tasks. The importance of pre-
serving local data structure in dimensionality re-
duction is often illustrated using artificial datasets
such as the ‘Swiss roll’ dataset (Tenenbaum et al.,
2000). Preservation of local data structure is the
key idea underlying succesful dimensionality re-
duction techniques such as Isomap (Tenenbaum et
al., 2000), LLE (Roweis and Saul, 2000), and t-
SNE (van der Maaten and Hinton, 2008).
In this paper, we present an extension of the
GPLVM that encourages the preservation of local
data structure in the latent space and that does not
affect the desirable properties of the GPLVM, such
as its non-linear probabilistic mapping from the la-
tent space to the data space. The extension en-
tails the introduction of a data-dependent ‘prior’
distribution over the parameters of the GPLVM.
The prior depends on the divergence between the
pairwise distances in the data space and the la-
tent space that is also employed in t-SNE (van der
Maaten and Hinton, 2008). The prior takes the
form of a Boltzmann distribution, in which the
energy function is formed by the objective func-
tion of t-SNE. We present experiments in which
we compare our extended model to the standard
GPLVM. The result of the experiments reveal that
the extended model significantly outperforms the
standard GPLVM in terms of the nearest-neighbor
error of the data representation in the latent space.
The outline of the remainder of this paper is as

follows. In Section 2, we review the probabilis-
tic PCA model. Section 3 describes the Gaussian
Process Latent Variable Model. In Section 4, we
present our approach to the preservation of local
structure in the GPLVM. Section 5 presents exper-
iments in which we evaluate the performance of
our extended GPLVM. The results of the experi-
ments are discussed in more detail in Section 6.
Section 7 concludes the paper and discusses direc-
tions for future work.

2 Probabilistic PCA

Probabilistic PCA (Tipping and Bishop, 1999) is a
linear-Gaussian generative model that is illustrated
in Figure 1(a). The model assumes that a dataset
X = {x1, . . . , xN} is generated conditioned on a
set of latent variables Z = {z1, . . . , zN} and a set
of parameters Θ = {W, β} as follows:

• For n is 1 to N :

– Sample zn ∼ N (zn|0, Id).
– Sample xn ∼ N (xn|znW, β−1ID).

Herein, d represents the dimensionality of the la-
tent space, D the dimensionality of the data space,
Ij is the j×j identity matrix, W represents a d×D
linear mapping from the latent space to the data
space, and β represents the precision of the Gaus-
sian noise model. The likelihood of the dataset X
under the model can now be obtained by marginal-
izing out the latent variables zn as follows:

p(X|W, β) =
N∏

n=1

p(xn|W, β)

=
N∏

n=1

∫
p(xn|zn, W, β)p(zn)dzn.

(1)

It can be shown that the likelihood function can be
maximized by setting W to be the principal eigen-
vectors of the data, i.e., the maximum-likelihood
solution corresponds to the standard PCA solu-
tion (Tipping and Bishop, 1999).
Lawrence (2005) showed that the likelihood func-
tion of probabilistic PCA is identical to the like-
lihood function of a similar model which differs
from the traditional formulation of probabilistic
PCA in three respects: (1) the latent variables zn

are treated as parameters, (2) a Gaussian prior is
defined over the columns wi of the linear mapping
W, and (3) the columns wi are marginalized out



xn

zn

W

β

N

(a) Probabilistic PCA.

xn

fn β

N

Z θ,σ

(b) GPLVM.

Figure 1: Generative models for probabilistic PCA
and GPLVM.

instead of the latent points zn. Mathematically, we
define:

p(W) =
D∏

i=1

N (wi|0, Id)

p(xn|W, zn, β) = N (xn|znW, β−1ID),

where wi represents a single column of the linear
mapping W, and again, β is the precision of the
noise model. The likelihood function of the re-
sulting model is given by:

p(X|Z, β) =
N∏

n=1

p(xn|zn, β)

=
N∏

n=1

∫
p(xn|W, zn, β)p(W)dW

=
D∏

i=1

N (X(i)|0, K), (2)

where X(i) represents the i-th column of X, and
K = ZZT + β−1IN . This likelihood function can
be shown to be identical to the likelihood function
in Equation 1 (Lawrence, 2005).

3 Gaussian Process Latent Variable
Model

The expression in Equation 2 can be recognized
as a product of D Gaussian processes for which
the covariance function is a linear function. The
Gaussian process defines a distribution over func-
tions f(z) in such a way that the set of values f(z)
evaluated at any set of points z1, . . . , zN is jointly
Gaussian distributed (MacKay, 1998). Instead of
defining a distribution over the set of linear map-
pings, as in the second formulation of probabilis-
tic PCA, we can thus use Gaussian processes to

define a distribution over all linear and non-linear
functions. A key property of the Gaussian process
is that the joint distribution p(f(z1), . . . , f(zN )) is
completely specified by its second-order statistics,
i.e., by the covariance matrix K. As a result, the
probabilistic PCA model can be turned in a non-
linear model by simply defining the entries of the
covariance matrix K to be given by a non-linear
covariance function κ(zi, zj). In the remainder of
the paper, we assume the covariance function is
given by a Gaussian kernel function with an addi-
tional bias term:

κ(zi, zj) = exp
(
−‖zi − zj‖2

2σ2

)
+ θ,

where σ represents the bandwidth of the ker-
nel and θ represents the bias term. Following
Lawrence (2005), we set θ = exp(−1) in all our
experiments.
The generative model for the GPLVM is depicted
in Figure 1(b), where we introduced an additional
latent variable F = {f1, . . . , fN} to make the dif-
ference between Gaussian process and the noise
model explicit. The likelihood function in the
model is given by:

p(X|Z, β, θ, σ) =
∫ N∏

n=1

p(xn|fn, β)p(F|Z, θ, σ)dF.

Herein, the noise model is identical to that of prob-
abilistic PCA, i.e., the noise model is assumed to
be an isotropic Gaussian with precision β:

p(xn|fn, β) =
D∏

i=1

N (x(i)
n |f (i)

n , β−1),

where x
(i)
n is the value of the i-th dimension of

xn. It can be shown (Williams, 1997) that for each
new point in the latent space zN+1, its counterpart
in the data space is Gaussian distributed:

p(xN+1|zN+1, X, Z) =

N (xN+1|XT K−1k, κ(xN+1, xN+1)− kT K−1k),

where k represents a column vector with entries
κ(xN+1, x·). Note that this out-of-sample exten-
sion is identical to that of Gaussian process regres-
sion, see, e.g., (Bishop, 2006).
Maximum likelihood learning in the GPLVM can
be performed by maximizing the logarithm of



Equation 2 with respect to the parameters Z. The
log-likelihood function L is given by:

L = −DN

2
log(2π)− D

2
log |K| − 1

2
XK−1XT ,

(3)
where we assumed that the elements kij of the ma-
trix K are given by kij = κ(zi, zj) + β−1δij , in
which δij represents the Dirac delta function. The
log-likelihood function can be optimized with re-
spect to Z using standard optimization techniques
such as conjugate gradients. The log-likelihood
could also be optimized with respect to the preci-
sion of the noise model β, but for simplicity, we
opt to treat β as a hyperparameter.
The main advantage of the GPLVM over proba-
bilistic PCA is that it allows for the use of non-
linear covariance functions, i.e., that it can rep-
resent non-linear functions from the latent space
to the data space. The probabilistic nature of the
GPLVM also gives it advantages over Kernel PCA
(the non-linear variant of ‘normal’ PCA), e.g., it
provides a principled way to deal with missing
data values. Please note that the GPLVM is not
a probabilistic version of Kernel PCA: in Ker-
nel PCA, the kernel function is defined over the
data space, whereas in the GPLVM, the covariance
function is defined over the latent space.
The main disadvantage of the GPLVM is that (as
in probabilistic PCA) there is no guarantee that the
local structure of the data is retained in the latent
space (Lawrence and Candela, 2006). Instead, the
GPLVM focuses on constructing a smooth map-
ping from the latent to the data space. In order
to facilitate the successful construction of such a
smooth mapping, the GPLVM only has to make
sure that dissimilar datapoints are far apart in the
latent space: if the global data structure would
not be modelled correctly, this would lead to dis-
continuities in the mapping. Hence, the GPLVM
mainly aims to model the global structure of the
data correctly. The focus of the GPLVM on pre-
serving global data structure conflicts with the
popular belief that retaining local data structure
is much more important in dimensionality reduc-
tion (Tenenbaum et al., 2000; Roweis and Saul,
2000; van der Maaten and Hinton, 2008). In gen-
eral, data can be thought of as lying on one or
more low-dimensional manifolds that are embed-
ded in the high-dimensional space. Using artificial
manifolds such as the ‘Swiss roll’ dataset (Tenen-
baum et al., 2000), it can easily be demonstrated

that large pairwise distances are of small relevance
to typical learning tasks.

4 Preserving Local Structure

Above, we introduced the GPLVM and discussed
some of its merits. Also, we discussed the main
weakness of the GPLVM: it mainly focuses on
preserving global data structure. In this section,
we present an extension of the GPLVM that aims
to preserve more of the local data structure in the
latent space.
It is possible to add additional terms to the likeli-
hood function of the GPLVM by designing a suit-
able prior distribution p(Z) over the parameters of
the GPLVM. This prior distribution can be used
to provide additional (soft) constraints on the data
representation in the latent space Z. For instance,
Urtasun et al. (2008) use a prior that is based on
the LLE cost function (Roweis and Saul, 2000)
to constrain the topology of the data representa-
tion in the latent space. The main drawback of
this approach is that the LLE cost function is ham-
pered by the presence of a trivial solution (viz.
Z = 0). The trivial solution is not selected be-
cause of a constraint on the covariance of the solu-
tion, but the optimization can easily cheat on this
constraint (van der Maaten and Hinton, 2008).
We propose to use a prior that is based on the re-
cently proposed t-Distributed Stochastic Neighbor
Embedding (t-SNE). In t-SNE, the pairwise affini-
ties pnm between all pairs of points (xn, xm) in the
data space are measured using a Gaussian kernel,
which is renormalized in order to obtain probabil-
ities that reflect the similarity between the data-
points. Subsequently, a similar kernel is defined
to measure the pairwise affinities qnm between all
pairs of points (zn, zm) in the latent space, but now
densities under a Student-t distribution are mea-
sured (and renormalized) to obtain the probabili-
ties (van der Maaten and Hinton, 2008). Mathe-
matically, the pairwise affinities are given by:

pnm =
exp(−‖xn − xm‖/2s2)∑

n′ 6=m′ exp(−‖xn′ − xm′‖/2s2)
,

qnm =
(1 + ‖zn − zm‖)2∑

n′ 6=m′(1 + ‖zn′ − zm′‖)2
,

where pnm and qnm represent the probability pick-
ing the pair of points (xn, xm) and (zn, zm), re-
spectively, from the set of all pairs of points.
The parameter s is set automatically according



to an information-theoretic heuristic (see (van der
Maaten and Hinton, 2008) for details).
The key idea behind t-SNE is to use a different
distribution to measure pairwise affinities in the
latent space than in the data space. The use of
the Student-t distribution in the latent space cor-
rects for the difference in the volume of the high-
dimensional data space and the low-dimensional
latent space (note that the volume of a space grows
exponentially with its dimensionality). In t-SNE,
the locations of the points in the latent space Z
are obtained by arranging them in such a way as
to minimize the Kullback-Leibler divergence be-
tween the probabilities in the data space and the
probabilities in the latent space. Mathematically,
t-SNE minimizes the cost function:

C =
∑
n6=m

pnm log
pnm

qnm
.

The asymmetric nature of the Kullback-Leibler di-
vergence causes the cost function to focus on ap-
propriately modeling the large values of pnm, i.e.,
on appropriately modeling the local structure of
the data.
In our extended GPLVM, we incorporate the t-
SNE cost function into the model by defining a
data-dependent ‘prior’ distribution p(Z) that takes
the form of a Boltzmann distribution in which the
t-SNE cost function is used as the energy function.
Mathematically, we define:

p(Z) ∝ exp

−1
γ

∑
n6=m

pnm log
pnm

qnm

 ,

where we omitted the normalization constant, and
where γ represents a scaling parameter that was
set to 10−7 in all our experiments. Note that the
distribution p(Z) depends on the data X, as a re-
sult of which it is not technically a prior. The main
aim of the prior distribution is to encourage solu-
tions Z in which the divergence between the sim-
ilarities in the data and the latent space is small,
i.e., in which the local structure of the data is ap-
propriately modeled in the latent space.
The introduction of the prior distribution gives rise
to an additional term in the log-likelihood function

L = −D

2
log |K| − 1

2
XK−1XT−

1
γ

∑
n6=m

pnm log
pnm

qnm
+ const,

where const comprises terms that are not affected
by changes in the model parameters Z.

5 Experiments

In order to evaluate the performance of the ex-
tended GPLVM, we performed experiments on
three datasets. The three datasets are briefly de-
scribed in 5.1. The setup of our experiments is
described in 5.2. The results of the experiments
are described in 5.3.

5.1 Datasets

We performed experiments on three datasets: (1)
the MNIST dataset, (2) the 20 newsgroups dataset,
and (3) the Olivetti dataset. The MNIST dataset
contains 70, 000 images of handwritten digit im-
ages of size 28 × 28 pixels. We used 2, 500 ran-
domly selected images in our experiments. The 20
newsgroups dataset consists of 100-dimensional
binary word-occurence features of 16, 242 docu-
ments, of which we randomly selected 2, 500 doc-
uments for our experiments. Each document is la-
beled according to the newsgroup it was extracted
from. The Olivetti dataset contains 400 images
of 40 individuals (10 images per individual). The
face images have size 92× 112 pixels.

5.2 Experimental setup

We compare the performance of the standard
GPLVM and the extended GPLVM by measuring
the log-likelihood of the training data under the
trained models. Ideally, we would like to measure
the likelihood (or reconstruction error) of test
points under the model, but the likelihood of new
datapoints under a GPLVM cannot be computed
without resorting to approximations (we discuss
this issue in more detail in Section 6). Next to the
evaluation of log-likelihoods, we also evaluate the
nearest-neighbor errors of the data representations
in the latent space. In other words, we measure the
percentage of points that have a point with a dif-
ferent class label as nearest neighbor in the latent
space. In addition, we present two-dimensional
scatter plots that visualize the data representations
learned by the model.
In all experiments, we set θ = β−1 = exp(−1),
γ = 10−7, and d = 2. In preliminary experiments,
we determined a range of appropriate values for
the bandwidth σ of the covariance function. We
only present results for the best setting of σ within
this range. Note that the appropriate value of σ
depends, among others, on the scale of the latent
space. As the value of the t-SNE cost function
depends on the scale of the latent space, the



Dataset Norm. GPLVM Ext. GPLVM
MNIST −1.8582 · 106 −1.8499 · 106

Newsgroups −2.3174 · 105 −2.3088 · 105

Olivetti −3.6496 · 106 −3.6598 · 106

Table 1: Best GPLVM log-likelihood of the nor-
mal and extended GPLVMs on the three datasets.

Dataset Norm. GPLVM Ext. GPLVM
MNIST 62.40% 5.92%
Newsgroups 39.40% 36.12%
Olivetti 61.00% 1.50%

Table 2: Nearest neighbor error of the normal and
extended GPLVMs on the three datasets.

appropriate values of σ for the normal GPLVM
and the extended GPLVM are typically not equal.
The initialization of the normal GPLVM
is performed using PCA, as proposed by
Lawrence (2005). The extended GPLVM is
initialized using t-SNE. The optimization is
performed using conjugate gradients1.

5.3 Results

In Table 1, we present the best GPLVM log-
likelihood (computed using Equation 3) for each
experiment across the entire range of values for σ.
The results presented in the table reveal that the
extended GPLVM and the normal GPLVM per-
form on par in terms of the GPLVM log-likelihood
of the training data.
In Table 2, the nearest neighbor errors of the
best latent space representations constructed by
the GPLVMs are shown for the three datasets. The
nearest neighbor error is defined as the fraction of
points that have a point with a different class la-
bel as their nearest neighbor. The results reveal
the strong performance of the extended GPLVM
model in terms of nearest-neighbor error in the la-
tent space: for all datasets, significant improve-
ments in terms of nearest neighbor errors are ob-
tained.
Figure 2 shows two scatter plots of the latent space
that correspond to the best solutions of both mod-
els on the MNIST dataset. The scatter plots reveal
that the extended GPLVM is much better capable
of revealing the structure of the dataset, because of
its focus on local structure preservation.

1Specifically, we used C. Rasmussen’s minimize.m
function.

6 Discussion

In the previous sections, we presented our ex-
tended GPLVM that aims at preservation of local
data structure in the latent space. We presented
experimental results revealing the strong perfor-
mance of the new model. In this section, we
discuss some issues regarding the normal and the
extended GPLVM.
An important problem of the GPLVM
is that it does not allow for the evalu-
ation of the likelihood p(xN+1|X, Z) ∝∫

p(xN+1|zN+1, X, Z)p(zN+1)dzN+1 of an
unseen test point xN+1 under the model.
The GPLVM allows for the computation of
p(xN+1|zN+1, X, Z), but it is not possible to
integrate out the latent variable zN+1 without
resorting to approximation methods.
The inability to compute the (log)likelihood of un-
seen test data is problematic, because it prohibits
evaluation of the generalization performance of
the GPLVM. The strong performance in terms of
log-likelihood of the training data may thus be due
to overfitting. A simple approach to determine
whether a GPLVM overfits on the training data
is by drawing samples from the model. We
performed an experiment in which we trained a
one-dimensional extended GPLVM on a dataset
of 1, 965 images of the face of a single individual.
All images have size 20 × 28 pixels (Roweis
et al., 2001). We sampled 64 uniformly spaced
points from the latent space, and computed the
distribution over the data space for each of these
points. In Figure 6, we visualize the mean of
each of these distributions. The figure shows
that sampling from the extended GPLVM leads
to natural ‘fantasy’ faces, as a result of which it
is unlikely that the model severely overfits the
training data.

An important issue in the training of GPLVMs
that we did not discuss until now is the question
how to initialize the parameters of the model.
This issue is addressed by Geiger et al. (2008)
who compared various initialization approaches.
Geiger et al. (2008) propose an approach that
initializes the parameters of the model as the orig-
inal datapoints (i.e., the latent space has the same
dimensionality as the data space). Subsequently,
a prior is placed over the rank of the solution that
promotes the identification of low-dimensional
latent data representations. The advantage of this
approach is that it provides a natural way to esti-
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Figure 2: Latent space representation of the MNIST dataset for the normal and the extended GPLVM.

Figure 3: Fantasy faces sampled from a one-
dimensional extended GPLVM.

mate the intrinsic dimensionality of the dataset.
The disadvantage of this approach is that it leads
to significant additional computational costs due
to the high dimensionality of the latent space and
the computation of the rank prior (and its gradi-
ent), which may prohibit practical applications of
the approach. The extended GPLVM provides a
much simpler approach to the initialization of the
model parameters: minimize the energy function
of the prior p(Z) and use the result as initial
model parameters. In contrast to the approach
presented by Geiger et al. (2008), this does not

lead to significant additional computational costs
in the GPLVM optimization.
An alternative way to view the extended GPLVM
is as an extension of t-SNE that provides it with
a probabilistic mapping from the latent space to
the data space (not to be confused with variants
of t-SNE that learn a mapping from the data
space to the latent space as presented by, e.g.,
van der Maaten (2009)). The extended GPLVM
could be trained on, e.g., motion-capture data,
and the resulting model could be used to generate
realistic human movement animations by drawing
samples from the model in the same way that the
fantasy faces in Figure 6 are drawn. Applications
of GPLVM models on motion capture data are
discussed in more detail by, e.g., Urtasun et
al. (2008).

7 Conclusions

We proposed an extension of the GPLVM that en-
courages the model to preserve local data structure
in the latent space. The extension entails the intro-
duction of a prior distribution on the parameters of
the GPLVM that incorporates the t-SNE objective
function. Our experimental evaluations reveal that
the extension leads to significantly better models
of the data. Code to reproduce the experimental
results presented in this paper is available from
http://ticc.uvt.nl/∼lvdrmaaten/tsne.
Future work focuses on extending the model
with a parametric mapping between the data
space and the latent space in order to obtain a
bijective mapping between the data space and the
latent space. This amounts to maximizing the
log-likelihood with respect to the parameters of



the mapping (Lawrence and Candela, 2006). The
parametrization may be formed by, e.g., a deep
network. It is likely that the best results can be
obtained by pretraining the network using, e.g., a
stack of RBMs (Hinton and Salakhutdinov, 2006)
or denoising autoencoders (Erhan et al., 2009).
An additional advantage of a GPLVM with a
parametric mapping between the data space and
the latent space is that it allows the computation
of the likelihood of test data under the model.
We also plan on investigating (semi)supervised
(data-dependent) priors over Z, for instance, by
employing a linear combination of the t-SNE cost
function and the NCA cost function (Goldberger
et al., 2005) as an energy function in the prior.
Such an approach may improve the results on
datasets in which partial label information is
available (Urtasun and Darrell, 2007). Moreover,
we aim to investigate learning the covariance
function of the Gaussian process as proposed by,
e.g., Salakhutdinov and Hinton (2008).
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