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Abstract 
 
Since the second half of the last century, computers became available to archaeologists. Since then, many have used 
various multivariate analysis techniques in the classification of archaeological objects with more or less success. Over 
the last decades, the popularity of multivariate analysis seems to have seized, partly because of the frequently 
disappointing performance of techniques such as principal components analysis and factor analysis. In particular, these 
techniques are hampered by their linear nature and by their emphasis on retaining global data structure. 
In this paper, we discuss a recently proposed technique for multivariate analysis, called t-SNE, which overcomes many 
of the weaknesses of principal components analysis and factor analysis. We illustrate the strong performance of t-SNE 
in experiments on a dataset of pottery profile drawings, in which we combine t-SNE with a shape matching technique 
based on shape contexts. 
Next to our discussion on t-SNE, we discuss a recently proposed affinity-based clustering technique, called affinity 
propagation. We show how affinity propagation can be used for the automatic construction of a typology of the shape 
profile drawings. 
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1 Introduction 
 
 
Multivariate analysis is a subfield of statistics that 
is concerned with the automatic analysis and 
interpretation of (large) datasets that contain high-
dimensional data, i.e., data that contains a large 
variety of variables or measurements1. Multivariate 
analysis is very relevant to archaeology, as it 
allows for, e.g., the detection of hidden patterns in 
data gathered from excavations, the generation of 
hypotheses, and the presentation of objective 
evidence for hypotheses. 
In the last half of the previous century, techniques 
for multivariate analysis received much attention in 
the archaeological field2. In particular, many 

                                                 
1 A.R. Feinstein. Multivariable Analysis. New Haven, CT: 

Yale University Press, 1996. 

2 Viz. Clarke 1962, Doran and Hodson 1975, Orton 1980, 
Lange 1990, Adams and Adams 1991. 

archaeologists have used ‘traditional’ techniques 
for multivariate analysis developed in other fields, 
such as principal components analysis3, factor 
analysis, or cluster analysis4 in the analysis of their 
data. However, over the last decade, the interest of 
archaeologists in multivariate analysis seems to 
have faded. One of the main reasons for the 
reduced interest in multivariate analysis is 
probably the often disappointing performance of 
the ‘traditional’ statistical techniques mentioned 
above. The poor performance of these techniques 
can often be explained from either the linear nature 
of the techniques, or from problems in the 
objective functions (typically sums of squared 
errors) that the techniques use. In the statistics and 
machine learning communities, a large effort has 
been made to overcome these problems. This effort 

                                                 
3 K. Pearson. On lines and planes of closest fit to systems of 
points in space. Philiosophical Magazine, 2:559-572, 1901. 
4 J.A. Hartigan. Clustering Algorithms. Hoboken, NJ: Wiley, 

1975. 
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has resulted in the development of a large number 
of new techniques for multivariate analysis with 
often remarkable performances compared to 
traditional statistical techniques. 
In this paper, we discuss two novel techniques for 
multivariate analysis: (1) a technique that 
visualizes high-dimensional data through nonlinear 
dimensionality reduction and (2) a techniques for 
the identification of clusters of similar objects. We 
combine the two techniques with a sophisticated 
technique that measures the similarity between 
shapes, and apply the techniques on a collection of 
pottery profile drawings. Specifically, we use the 
visualization technique to make two-dimensional 
plots that reveal the underlying structure of the 
objects in the collection, and we use the clustering 
technique to automatically construct typologies for 
the objects in the collection. 
The outline of the remainder of this paper consists 
of five main parts. First, we discuss the shape 
matching technique that forms the basis for our 
experiments. Second, we present the technique that 
is used to visualize the similarities between objects 
in a two-dimensional plot. Third, we address the 
clustering technique that we use to automatically 
construct typologies from the collection of pottery 
profile drawings. Fourth, we present the setup and 
results of the experiments we performed on the 
pottery profile drawing collection. Fifth and last, 
we discuss the results of our experiments, and we 
present conclusions and direction for future work. 
 
 
2 Shape comparison 
 
 
The computation of the similarity of two shapes is 
a well-studied problem in computer vision. 
Frequently used techniques include statistical 
moments5, curvature-based measures6 and shape 
contexts7. In this study, we opt for the use of the 

                                                 
5 J. Ricard, D. Coeurjolly, and A. Baskurt. Generalizations of 

angular radial transform for 2D and 3D shape retrieval. 
Pattern Recognition Letters 2614:2174–2186, 2005. 

6 F. Mokhtarian, S. Abbasi, and J. Kittler. Efficient and robust 
retrieval by shape content through curvature scale space. 
In Proceedings of the International Workshop on Image 
Databases and Multimedia Search, pages 35-42, 1997. 

latter technique. The shape context method is 
briefly outlined below. Extensive descriptions of 
the algorithm are presented by Belongie, Malik, 
and Puzicha (2002). The main steps of the 
computation of dissimilarities between shapes 
based on shape contexts are illustrated in Figure 1. 
 

 
Figure 1. Illustration of shape comparison using 

shape contexts. 
 
The key idea behind shape contexts is to sample a 
set of points from the shape contour and to 
describe these points with local descriptors – the 
shape contexts – that measure the measure the 
relative angle and distance to the other points that 
were sampled from the shape contour. The 
advantage of the use of local descriptors, i.e., 
descriptors that assign large weight to the 
neighborhood of the point at hand, is that the 
descriptors are robust against noise and minor 
deformations of the shape. The relative distance 
and angle measurements give rise to descriptors 
that are invariant under rotation and rescaling of 
the shape images. The dissimilarity between two 
shape contexts, i.e., between two collections of 
local descriptors corresponding to two shapes, is 
computed in the following two steps.  
First, the minimal assignment costs between the 
two collections of local descriptors are computed. 
The distance between two local descriptors in the 
assignment problem is a standard Euclidean 
distance. The solution of the assignment problem 
defines a one-to-one mapping from points on the 
first shape contour to points on the second contour. 

                                                                             
7 S. Belongie, J. Malik, and J. Puzicha, J. Shape Matching and 

Object Recognition Using Shape Contexts. IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence 244:509-521, 2002. 
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Second, a thin plate spline warping8 is computed 
based on the correspondences between the shapes 
in such a way, as to minimize the difference 
between the two shapes. Herein, the difference 
between the two shapes is defined as the sum of 
the lengths of the correspondence edges. The 
dissimilarity between the two shapes is defined as 
a linear combination of the energy of the thin plate 
spline warping and the residual difference between 
the first shape and the second (warped) shape.  
 
 
3 Visualization 
 
 
Data visualization can be performed using 
techniques for dimensionality reduction. 
Dimensionality reduction techniques model objects 
by points in a low-dimensional space (typically of 
two dimensions to facilitate easy visualization) in 
such a way, that the original pairwise 
(dis)similarities between the objects are preserved 
as good as possible in the low-dimensional space. 
For instance, principal components analysis finds a 
linear mapping of the original high-dimensional 
data that minimizes the sum of squared errors 
between the pairwise Euclidean distances in the 
high-dimensional and the low-dimensional space. 
The main problem of principal components 
analysis is that, as a result of the squared error 
criterion, it mainly focuses on retaining large 
pairwise distance in the low-dimensional space. 
However, it is generally accepted that preservation 
of small pairwise distances is much more 
important in data visualization. 
Recently, van der Maaten and Hinton (2008) 
proposed an alternative to PCA, called t-SNE, that 
performs remarkably well in the visualization of 
high-dimensional data. The key idea behind t-SNE 
is to focus on retaining local data structure (i.e., 
small pairwise distances) instead of on the global 
data structure. The technique consists of three main 
steps, which are briefly described below. The three 
steps are illustrated in Figure 2. 
 

                                                 
8 F. Bookstein. Principal warps: Thin-plate splines and 

decomposition of transformations. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 116:567-585, 
1989. 

 

 
 

Figure 2. Illustration of visualization using t-SNE. 
 
First, the local structure of the input data is 
evaluated. This is done by centering a normal (i.e., 
Gaussian) distribution over each data point, and 
measuring the density of all datapoints under that 
normal distribution. After normalization, this 
process results in probabilities  that are 
proportional to the similarity of the datapoints  
and . 
Second, we generate a random set of points (which 
corresponds to the input data) in the two-
dimensional scatter plot, and we define similar in 
the scatter plot. The only difference from the 
similarity measurements described above is that, 
now, a Student-t distribution with a single degree 
of freedom (i.e., a Cauchy distribution) is 
employed instead of a normal distribution. The 
probabilities in the two-dimensional scatter plot are 
denoted by . 
Third, the points in the two-dimensional scatter 
plot are iteratively moved around in order to 
minimize the difference between the probabilities 
over the data  and the probabilities over the 
map . The difference between  and  is 
measured by the so-called Kullback-Leibler 
divergence9, which is a natural measure for the 
difference between two probability distributions. 
The ‘moving around’ of the points in the scatter 
plot (in order to represent the similarities of the 
data points faithfully) is performed using gradient 
descent. 
 
 

                                                 
9 S. Kullback and R.A. Leibler. On Information and 

Sufficiency. The Annals of Mathematical Statistics 221:79-
86, 1951. 
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4 Clustering 
 
 
The aim of clustering is to identify groups of 
objects that are similar under the specified 
similarity measure (in our case, the shape context 
distance). This aim can be achieved by, e.g., 
minimizing the sum of the distances between 
points and their corresponding cluster centers, as is 
done in k-means clustering10. An important 
disadvantage of k-means clustering, and most other 
clustering techniques, is that they require the user 
to specify the number of clusters k beforehand. In 
the context of automatic typology construction, 
this implies that the archaeologist needs to specify 
the number of types that the typology should 
comprise, even though he has no clear insight into 
the underlying similarity structure of the data. 
Recently, Frey and Dueck (2008) presented a 
technique, called affinity propagation, that 
overcomes this limitation by automatically 
selecting the number of clusters. In our work, we 
adopt the affinity propagation technique, which is 
described below. 
Affinity propagation aims to maximize the sum of 
the pairwise similarities and their corresponding 
exemplars. Supposing we are given a similarity 
matrix  with elements , such as a matrix of 
negative shape context distances, affinity 
propagation performs the following maximization: 
 

 

 
Herein, the term  is included to prevent the 
technique from selecting illegal clustering 
solutions, i.e., from clustering solution in which 
data points are assigned to more than one 
exemplar.  
 

                                                 
10 J.A. Hartigan. Clustering Algorithms. Hoboken, NJ: Wiley, 

1975. 

 
 

Figure 3. Illustration of the message-passing 
algorithm underlying affinity propagation. 

 
The maximization of the function is performed 
using a simple message-passing algorithm11, which 
is illustrated in Figure 3. 
As mentioned above, affinity propagation 
automatically selects the number of clusters in the 
data. It does so by introducing a small penalty for 
each point that is selected to be an exemplar. As a 
result, the technique will only add an additional 
exemplar (i.e., cluster) if this exemplar is truly 
required to model the cluster structure of the data 
(if the cluster structure does not require the 
addition of an additional exemplar, affinity 
propagation will not add an exemplar because of 
the penalty). Hence, in the automatic typology 
construction setting, affinity propagation 
automatically determines the optimal number of 
types that is required to describe the structure in 
the data. 
 
 
 
 
 
 

                                                 
11 The message passing algorithm can be derived by 
performing belief propagation in a factor graph corresponding 
to the objective function, see Frey and Dueck, 2008. 
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4 Experiments 
 
 
In order to evaluate the performance of the novel 
visualization and clustering techniques, we 
performed experiments on a dataset of pottery 
profile drawings. This section presents the results 
of our experiments, and consists of three main 
parts.  
First, we introduce the pottery profile dataset that 
was used in the experiment. Second, we present the 
setup of the experiments. Third, we present the 
results of the experiments. 
 
Dataset 
The pottery profile dataset contains 1,087 drawings 
of pottery profiles that were scanned from 14 
publications. All pottery was found in The 
Netherlands, but the majority of the pottery 
originates from the northern part of the country. 
The images were scanned to scale with a resolution 
of 200 dpi. The images were manually 
preprocessed in order to remove small scanning 
artifacts, and the resulting images were binarized. 
For parts of the dataset, typological classifications 
are available that follow the typology introduced 
by Taayke12. The dataset is described in more 
detail by Mom13.  
 
Experimental setup 
The setup of our experiments consists of two main 
steps, which are described below.  
First, we perform shape context matching on all 
pairs  of pottery profile drawings to compute 
their pairwise dissimilarity . In the experiments, 
we assume that the similarity of two shapes is 
symmetric, i.e., that . The shape matching 
results in a pairwise dissimilarity matrix  with 
elements . We normalize the elements of matrix 

 in such a way that they lie between 0 and 1.  

                                                 
12 E. Taayke. Die einheimische Keramik der nördlichen 

Niederlande, 600 v.Chr. bis 300 n.Chr. Dissertation, 
University of Groningen, 1996. 

13 V. Mom. Secanto: The Section Analysis Tool. In 
Proceedings of the XXXIII Computer Applications in 
Archaeology Conference,  pages 95–101, 2005. 

Second, we use the pairwise dissimilarity matrix 
 as input into t-SNE (for visualization) and 

affinity propagation (for automatic topology 
construction). As affinity propagation takes as 
input a collection of pairwise similarities, we 
define a similarity matrix  with elements 

. We set the preference value  that is 
used by affinity propagation to determine the 
number of clusters as the median of the pairwise 
similarities  (with ). 
The result of running t-SNE on the pairwise 
dissimilarity matrix  is a two-dimensional 
scatter plot, in which each point corresponds to a 
pottery profile. We visualize the result by plotting 
the pottery profile images on top of their 
corresponding points. 
The result of running affinity propagation on the 
pairwise similarity matrix  is a subdivision of the 
pottery profiles into clusters. We visualize the 
clustering of the pottery profiles by plotting all 
profiles in a rasterized image, in which the profiles 
in a single column correspond to the same cluster. 
 
Results 
In Figure 4, we show the results of applying t-SNE 
onto the pairwise dissimilarities that were obtained 
through shape context matching. All shape profiles 
in the drawing are drawn to scale. The resulting 
visualization reveals a great deal of the underlying 
structure of the data. In particular, the results 
reveal the variety in properties such as scale, angle 
of the pottery’s belly, thickness of the pottery, and 
the shape of the base in the entire pottery profiles 
collection. 
In Figure 5, we show a visualization that was 
obtained in exactly the same way as the 
visualization in Figure 4, except now we only used 
the data that was gathered and presented by 
Taayke14. The pottery profiles presented by Taayke 
are all categorized accroding to this – traditionally 
made – typology. This allows us to color the 
profiles in the visualization based on Taayke’s 
typology. This coloring is performed in Figure 5. 
The results presented in the figure show that the 
visualization captures much of the structure that 
Taayke aimed to capture when he developed his 

                                                 
14 E. Taayke. Die einheimische Keramik der nördlichen 

Niederlande, 600 v.Chr. bis 300 n.Chr. Dissertation, 
University of Groningen, 1996. 
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typology: profiles with the same color (i.e., the 
same type) are often modeled fairly close together. 
On the other hand, the visualization also shows 
profiles that have a distinctively different color 
from their neighbors in the visualization, and are 
thus not modeled near the other profiles with the 
same type. There are four possible reasons for such 
‘errors’: (1) an error occurred in the computation 
of the shape similarities, (2) an error occurred in 
the modeling of the shape similarities in the 
visualization, (3) important attributes have not 
been included in the analysis, for instance, as in 
our case, surface treatment and decoration, or (4) 
there are ‘errors’ or inconsistencies in the used 
typology. In the latter case, visualizations such as 
the ones presented in Figure 4 and 5 may help the 
archaeological expert to identify and resolve such 
inconsistencies15. Also the visualizations may point 
out to the expert which relevant variables still need 
to be included in the analysis. 
In Figure 6, we show the results of applying 
affinity propagation on the pairwise dissimilarities 
obtained from the shape context matching. In the 
figure, each column corresponds to a cluster. As in 
Figure 5, the colors of the pottery profiles indicate 
the type of the pottery according to the typology 
that was constructed by Taayke. The number of 
clusters to be constructed was automatically 
determined by affinity propagation. The results 
presented in Figure 6 may be interpreted as an 
automatically constructed typology. 
Although the clustering seems to contain a few 
‘errors’, the clustering seems fairly consistent 
overall. Note the difference in the size of the 
clusters. Als notice that the automatically 
constructed typology was made based only on 
shape information, and not based on any other 
domain or contextual knowledge about the artifacts 
(we discuss this issue in more detail below). 

                                                 
15 We contacted the original developer of the typology, 
Taayke, but, unfortunately, he did not comment on the 
visualization in Figure 2. 
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Figure 4. Visualization of the pottery profiles dataset using shape contexts and t-SNE. All profiles are drawn 

to scale. 
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Figure 5. Visualization of all pottery profiles published by Taayke. The pottery profiles are colored 
according to the typology presented by Taayke. 
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Figure 6. Clusters identified by affinity 
propagation based on shape context similarities. 

Each column in the figure corresponds to a cluster. 
 

 
5 Discussion 
 
 
The results presented in the previous section raise a 
number of new interesting questions, which could 
not be addressed before (due to the poor 
performance of traditional techniques for 
multivariate analysis). Below, we pose and discuss 
three such questions. 
 
How to evaluate the results presented by statistical 
approaches? 
An important question that quickly comes to mind 
when carefully inspecting our results is how we 
should assess such results and what we may 
conclude from them. This question is not easy to 
answer, as we cannot employ standard statistical 

tests to test hypotheses about whether, e.g., two 
profiles belong to the same group. 
In general, visualizations and clusterings such as 
those presented in the paper should be considered 
as additional objective, meaning independent 
repeatable, evidence that can be used to support 
hypotheses we already developed. If a large 
number of different shape matching and 
visualization techniques (and the combinatorial 
number of combinations thereof) consistently 
model two profiles close together, we can use this 
information to support our hypothesis that the two 
profiles are member of the same group of profiles. 
On the other hand, we do acknowledge that the use 
of statistical evidence in this way is not completely 
satisfactory. 
 
How to incorporate domain or contextual 
knowledge? 
The approach to visualization of pottery profile 
drawings that we presented in this paper does only 
incorporate a fairly limited amount of domain 
knowledge. An example of domain knowledge that 
is included is that the shape of pottery is of 
relevance to its function, and hence, to its type. 
However, it is unlikely that this degree of domain 
knowledge is sufficient to obtain high-quality 
visualizations or clusterings of archaeological data. 
It is certainly possible to include more domain 
knowledge into approaches such as the one 
presented above. For instance, in the case of 
pottery, it is well-known that small changes in the 
width of the base have a large influence on the 
volume of the pottery, as a result of which base 
width is a relatively important variable in the 
determination of pottery. It is possible to 
incorporate this domain knowledge in the shape 
matching, e.g., by assigning more weight to the 
base of the profiles (as is done by Mom and Drenth 
elsewhere in this volume)16. In similar ways, 
contextual knowledge such as find location, dating 
(based on C14 or dendrochronology), etc., should 
also be incorporated in our approaches as well. For 
instance, the find location may be included in the 
construction of the visualization as an additional 
variable. 
 
 

                                                 
16 Mom and Drenth, elsewhere in this volume. 
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How do the results of multivariate analysis relate 
to ‘traditional’ typologies? 
We do not intend to rediscuss the theoretical pros 
and cons of the use of typologies. These pros and 
cons have received ample discussion in the 
literature cited above and more lately in Lange (ed)  
200417. What we hope to have demonstrated is that 
the automatic analysis of archaeological material is 
a valid and practical tool in visualizing the 
variation and the mutual relations in the 
‘unmanageable mass of individual units that form 
the basic archaeological record’18.  
Our results do raise archaeologically relevant 
questions with respect to the value of typologies if 
the multivariate analysis does not identify the 
presence of clusters. This can be observed in our 
visualizations in Figure 4 and 5, where most 
structure in the data seems to consist of gradual 
changes in, e.g., the thickness of the pottery, the 
size of the pottery, and the angle of the belly of the 
pottery. This raises the question whether for this 
kind of material the use of hard coded, traditionally 
constructed, typologies, is scientifically sound. 
Typologies define either hard boundaries between 
groups of objects, or they define a number of 
centroids – ideal/holo/archetypes – around which 
all similar others aggregate more or less closely. 
As a result, they often do not completely respect 
the gradual scales. However, they remain an 
essential tool in the classification of archaeological 
material that facilitate the generation of 
manageable descriptions of the material. We 
believe multivariate analysis and traditional 
typologies should be used together in order to 
generate descriptions of the data that are as 
complete as possible. In such a combined 
approach, the multivariate analysis can serve as 
objective evidence for the proposed typology of 
classification. 
 
 
 
 

                                                 
17 A.G. Lange. De Horden near Wijk bij Duurstede: plant 

remains from a native settlement at the Roman frontier; a 
numerical approach. ROB, Amersfoort, 1999. 

18 J.E. Doran and F.R. Hodson. Mathematics and Computers 
in Archaeology (p.158). Edinburgh University Press, 1975.  

6 Conclusion 
 
 
The paper discussed two new techniques for 
multivariate analysis, and combined these 
techniques with a sophisticated shape matching 
technique. The results of our experiments with this 
combination on a dataset of pottery profile 
drawings are encouraging, and may readily be used 
as objective evidence for typologies or 
classification that were constructed in traditional 
manners. 
Future work primarily focuses on incorporating 
more domain knowledge into the developed 
techniques. For instance, it is well known that the 
base of potterys is of large influence to its volume, 
and is thus of high importance to its function. This 
domain knowledge could be exploited in the 
software, e.g., by assigning additional weight to 
differences in base width in the shape context 
matching. The same holds for the angle of the top 
of the pottery (‘open’ or ‘closed’), which is very 
important as it determines whether pottery was 
used for cooking or storage. 
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