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Large, long-term coastal imagery datasets are nowadays a low-cost source of information for various coastal re-
search disciplines. However, the applicability ofmany existing algorithms for coastal image analysis is limited for
these large datasets due to a lack of automation and robustness. Therefore manual quality control and site- and
time-dependent calibration are often required. In this paper we present a fully automated algorithm that clas-
sifies each pixel in an image given a pre-defined set of classes. The necessary robustness is obtained by
distinguishing one class of pixels from another based on more than a thousand pixel features and relations be-
tween neighboring pixels rather than a handful of color intensities.
Using a manually annotated dataset of 192 coastal images, a SSVM is trained and tested to distinguish between
the classes water, sand, vegetation, sky and object. The resulting model correctly classifies 93.0% of all pixels in a
previously unseen image. Two case studies are used to show how the algorithm extracts beach widths and
water lines from a coastal camera station.
Both the annotated dataset and the software developed to perform themodel training and prediction are provid-
ed as free and open-source data sources.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Coastal imagery nowadays is a valuable and low-cost source of infor-
mation for coastal research in a variety of disciplines. Characteristics such
as beach width, water line dynamics, wave breaking and runup, vegeta-
tion cover, aeolian dynamics and beach usage are visible to the naked
eye from a simple coastal image (e.g. Fig. 1, example, A). Further analysis
of the acquired images can provide us with derived information like ba-
thymetries, flow patterns and sediment transport trajectories. Coastal
image analysis is not restricted to ordinary visible light imagery, but can
be applied to (near-)infrared, multi- or hyperspectral imagery and video
as well, increasing the number of coastal features that can be
distinguished.

Since investments to install a coastal camera station and correspond-
ing data storage are low compared tomost othermonitoring alternatives,
the amount of coastal camera stations worldwide is increasing steadily.
With the increasing amount of coastal imagery data, an increasing num-
ber of coastal image analysis algorithms is being developedwith a variety
c Engineering, Faculty of Civil
gy, Stevinweg 1, 2628CN Delft,

hout@tudelft.nl
of applications. Pioneering work on swash runup estimates from coastal
images was done by Holland and Holman (1991). The extraction of
runup lines inspired many authors to map intertidal bathymetries from
series of runup lines obtained from a series of coastal images (e.g. Plant
and Holman, 1997; Aarninkhof et al., 2003; Quartel et al., 2006; Plant
et al., 2007; Uunk et al., 2010; Osorio et al., 2012). Many shoreline extrac-
tion algorithms are available, including those that use multispectral im-
ages for increased precision (e.g. Sekovski et al., 2014). Subsequently,
coastal images were used to estimate surfzone currents (e.g. Holland
et al., 2001; Chickadel et al., 2003) and later subtidal bathymetries (e.g.
Aarninkhof et al., 2005; van Dongeren et al., 2008; Holman et al., 2013).
The global presence of coastal camera stations makes it possible to mon-
itor long-term coastal behavior (Smit et al., 2007) and sparked several
applications for coastal zone managers, like estimating coastal state
indicators (Davidson et al., 2007), deriving beach usage statistics
(Jimenez et al., 2007; Guillén et al., 2008), tracking sandbar positions
(Lippmann and Holman, 1989; van Enckevort and Ruessink, 2001; Price
and Ruessink, 2011) and rip current detection systems (Bogle et al.,
2000; Gallop et al., 2009).

The size of the coastal imagery archive grows rapidly. New camera
stations are deployed every year, adding to the diversity of the total
dataset. The data intake per station is increasing, which makes the
total dataset harder to analyze. The applicability and performance of
these algorithms on the large coastal imagery datasets that are
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Fig. 1. Example of a coastal image taken on July 1st, 2013 in Kijkduin, The Netherlands (A) and the corresponding manual annotation (B).
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presently available dependon two characteristics in particular: automa-
tion and distinctiveness of relevant pixels. Many algorithms need some
kind of manual pre-selection of relevant pixels (the region of interest)
or manual quality control, which often hampers analysis of large,
long-term coastal imagery datasets (e.g. Holland and Holman, 1991;
Aarninkhof et al., 2003; Jimenez et al., 2007). Algorithms that do not
rely on a manual quality control need to distinguish between classes
of pixels based on a limited number of intrinsic pixel features, usually
the color channels RGB or HSV (e.g. Aarninkhof et al., 2003; Quartel
et al., 2006). Consequently, feature characteristics for different classes
are very likely to overlap and automated classification of large, long-
term coastal imagery datasets becomes unreliable if not unfeasible
without site- and time-dependent calibration, limiting the applicability
of the algorithm.

To the best of our knowledge, this paper presents the first fully auto-
matic, high-quality algorithm for the supervised segmentation of coast-
al images into image regions containing major classes such as water,
sand, vegetation, sky, and objects (Fig. 1, B). In contrast to prior work,
this algorithm does not rely on a few color features with limited dis-
criminability between classes, but aggregates over more than a thou-
sand features that contain information on color, texture, and visual
appearance. In addition, the algorithm uses a machine learning frame-
work that allows us to leverage thousands of features for high-
accuracy classification and enables the use of structured learning
where relations between neighboring pixels are taken into account.
The algorithm is not tailored to any specific classification task, but is
merely a general classification framework that can be applied on large,
long-term coastal imagery datasets or on parts of individual images.
Nonetheless, it produces substantially better results than obtained by
tailored algorithms that rely on color features alone and omit the use
of structured learning. In addition, we present a manually annotated
dataset of coastal images that can be used for training and testing of
machine-learning based systems such as ours, and we present an
open-source Python toolbox for performing coastal image analysis
tasks.

2. Methodology

Automated classification of regions in coastal images is done using a
classification model. Classifying image regions into various meaningful
classes based on a set of properties (features) shows similarities to re-
gression models (e.g. linear regression). Regression models are used to
predict the value of a target parameter based on some input samples.
In principle, classification models are regression models, which use a
threshold value for the target parameter to distinguish between a set
of discrete classes.

Supervised classification models (as opposed to unsupervised
models, which are not treated here) require training. During training
the optimal threshold values are determined based on an annotated
dataset. Optimization is done by minimizing a cost function. The
definition of this cost function is the main factor that distinguishes
between various model types. For example, a linear regression
model usually minimizes the mean squared error of the predicted
target parameter over all training samples. A network of regression
models, like an artificial neural network, is occasionally used for
classification purposes (e.g. Kingston, 2003; Verhaeghe et al.,
2008). In this study a method closely related to a LR is used (e.g.
Vincent, 1986; Dusek and Seim, 2013). A LR is, although the name
suggests regression, a classification method that optimizes the lo-
gistic loss function.

The workflow adopted in this study consists of four steps: 1. a
manually annotated dataset of coastal images is oversegmented
into superpixels; 2. for all images in the dataset an extensive set of
features is extracted; 3. a suitable classification model is trained
using the manually annotated data; and 4. the trained model is
used to automatically classify future images. Theworkflow is visually
presented in Fig. 2. In this section these four steps are described. In
the next section the performance as well as a first application of
the algorithm is presented.
2.1. Dataset

The ArgusNL dataset with manually annotated coastal images con-
sists of 192 images obtained from 4 coastal camera stations located
along the Dutch coast (Egmond, Jan van Speijk, Kijkduin and Sand
Motor), each containing 5 to 8 cameras.

Each camera that is part of the coastal camera stations used in this
study takes a snapshot image twice an hour. Apart from snapshot im-
ages, also 10 min mean, variance, min and max images are stored, but
these are not used for classification. Also, any images that were ob-
scured and thus did not contain any valuable data are discarded. Images
can be obscured either because the image was taken before sunrise or
after sunset or because of the presence of rain, fog, sun glare in the
water or dirt on the camera lens.

From all suitable snapshot images taken during the summer of 2013
by these cameras 192 images are randomly selected. The images are au-
tomatically oversegmented (see Section 2.2) and one of the following
classes is assigned manually to each 1. sky; 2. water (sea); 3. water
(pool); 4. sand (beach); 5. sand (dune); 6. vegetation; 7. object (sea);
8. object (beach); and 9. object (dune). In this study the classes are ag-
gregated to the most relevant ones, being: 1. sky; 2. water; 3. sand;
4. vegetation; and 5. object.

The ArgusNL dataset, including the images, oversegmentation
and annotation, was published by Hoonhout and Radermacher
(2014).



Fig. 2. General workflow of classification algorithmwith the fourmain steps as explained in Section 2. Splitting the dataset in a training and test set is repeatedmultiple times to limit the
dependence of the actual split and results in a set ofmodel scores. Each step in the algorithm is numbered for referencing in themain text. The thumbnails provide visual references to the
figures presented in Sections 1 and 2.
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2.2. Oversegmentation

Segmentation is the process of subdividing the image in functional
segments, like dunes, beach and sea. Oversegmentation is the process
of subdividing the image in smaller segments of similar pixels, which
are called superpixels, that do not necessarily constitute a functional
part of the image.1 Oversegmentation into superpixels enables us to
boost the number of features that can be used for classification (Figs. 3
and 2, step 1). The automated segmentation algorithm SLIC (Achanta
et al., 2012) is adopted for this purpose.

The SLIC algorithm is a computationally inexpensive algorithm that
projects each pixel in an image to be segmented into a 5-dimensional
space based on 2 image coordinates (U and V) and 3 intensity or color
dimensions (usually using the perceptually linear CIELAB colorspace
rather than RGB). Subsequently, a predefined number of cluster centers
is chosen in this space. Each cluster centerwill form a superpixel. Initial-
ly, the cluster center locations are chosen as an equidistant regular grid
over the image. 600 superpixels are used for this dataset, although the
exact number may vary per image depending on its dimensions since
a regular grid is to be assured. Each pixel is assigned to the closest clus-
ter center. Subsequently, like in K-means clustering (Lloyd, 1982), the
1 The terms segmentation and oversegmentation are used indiscriminately in the re-
mainder of this paper. In both cases the process of oversegmentation is referred to.
RMS distance in the 5-dimensional space from each pixel to its corre-
sponding cluster center is then iteratively minimized by moving the
cluster centers each iteration step to the centroids of the current cluster
and updating the cluster assignments.

The SLIC algorithmdeviates from the standard K-means algorithm in
the treatment of the spatial dimensions U and V. First, the area in an
image that can be covered by a single superpixel is limited. A superpixel
can therefore not stretch from one corner of the image to another. Sec-
ond, the importance of the spatial dimensions is weighed compared to
the intensity dimensions using a user-defined compactness parameter.
A high compactness results in relatively square and heterogeneous
superpixels, while a low compactness results in homogeneous, but
scattered superpixels. A compactness of 20 is used throughout this
study.

The SLIC algorithm does not prevent a superpixel from compris-
ing distinct image structures. Such scattered superpixels may have
undesirable effects. For example, white-capping of waves may be-
come part of a single superpixel together with white sand at the
beach. Along the color dimensions these pixels are very close and
possibly equal. Along the spatial dimensions these pixels may be
very close as well, but not connected. In order to prevent these am-
biguous superpixels from appearing, the superpixels are forced to
be connected by running a region growing algorithm to post-
process the segmentation result.

The region growing algorithm simply determines if all pixels within
a superpixel are interconnected. If not, the largest cluster within the



Fig. 3. Original image (left) and oversegmented image (right).
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superpixel is preserved and the other, smaller clusters are assigned to
the surrounding superpixels. If more superpixels surround a cluster,
the one that shares the largest boundary is chosen.

2.3. Feature extraction

The success of classification depends on the distinctive quality of the
different features. The color features that are in common use (Quartel
et al., 2006; Aarninkhof et al., 2003) are not sufficient to separate the dif-
ferent classes that occur. Features are not very distinct when only
looking at intrinsic features, like RGB or HSV, alone. Fig. 4 shows an
image in which three superpixels are selected from the classes water,
sand and object. The intrinsic features for these superpixels show very
limited variability over the classes, which make reliable classification
difficult. A key property of the proposed algorithm is the use of many
derived features that can distinguish classes over a range of different
conditions.

After transformation of the image from pixels with only color to
superpixels, these additional features become available. Superpixels
have variance, patterns, texture, color, shape and topological relations
that can be transformed into features. This allows to generate more
than a thousand of different new features (Fig. 2, step 2a). The challenge
is to find a set of features that describe the classes that are of interest
uniquely.

By using location features obvious information is learned, for in-
stance sky is generally above the sea and sea is often above the beach.
Shape features can for example help separate breaking waves as these
tend to be eccentric and have highly irregular superpixel shapes. Some
Fig. 4. Coastal image from Kijkduin, The Netherlands, with three selected superpixels from the c
over the classes (middle), while derived features providemuchmore distinctiveness (right). (Fo
web version of this article.)
areas require texture features that describe the spatial variation and
structure of colors and intensities. Vegetation can be inferred from a
Gray Level Co-occurrence Matrix (GLCM, Haralick et al., 1973) applied
to the green channel (Lu, 2005).

The proposed classification algorithm uses 1727 features from the
categories 1. position, 2. intensity, 3. shape, and 4. texture. Fig. 5
shows a selection of features from these categories. The features of po-
sition and intensity are computed using trivial functions. The shape
and texture definitions represent more complex characteristics. For ex-
ample, the holeyness is defined as the superpixel convex hull area divid-
ed by the total pixel area. The eccentricity is the ratio of the minor and
major axes of an ellipse fitted to the shape of the superpixel and shape
is defined as the area divided by the squared perimeter. The gray corre-
lation corresponds to the correlation with a Gray Level Co-occurrence
Matrix with interval of 5 and 17 pixels. In the full feature set the gray
patterns are varied by angle. Fig. 5 shows that shape features distinguish
breakers and vegetation from beach, sky and deep sea, while texture
featuresmainly separate beach from sea. Thewhole set of features com-
bined provides information on how to distinguish classes individually.

One of the categories that are hard to separate is water from wet or
dry sand. This can be done more accurately using additional channels,
like near-infrared (Hoonhout et al., 2014), but additional channels can
also be added artificially (Fig. 2, step 2c). Here extra channels are creat-
ed based on difference of Gaussian filtering (Crowley and Parker, 1984)
and Gabor filtering (Gabor, 1946). Difference of Gaussian filtering en-
hances areas in an image with large pixel intensity gradients, for exam-
ple areas which are darker (or lighter) than their surroundings, such as
wet sand. Gabor filtering is a method to enhance image texture at
lasseswater, sand and object (left, red dots). Color intensities alone show limited variability
r interpretation of the references to color in this figure legend, the reader is referred to the



Fig. 5. A selection of features from the four main categories used for classification extracted from Fig. 3. Low values are light, high values are dark.
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various scales and orientations. Fig. 6 shows an impression of these
extra artificial channels. Each of these channels is added to the original,
segmented image and for each of these channels features are extracted.

Both channels and features are postprocessed tomake sure that fea-
tures are invariant for scale of the image and/or superpixel. For example,
the area of a superpixel can be a feature, but is expressed in number of
pixels. Since the average number of pixels in a superpixel varies de-
pending on the image size, the feature value depends on the image
size aswell. Such a feature value is divided by the total number of pixels
in the image to make it invariant for the scale of the image. Moreover,
Fig. 6.A selection of artificial channels extracted fromFig. 3: Gabor kernel (left)with the corresp
difference response (right) used to detect relatively dark and lighter areas.
some features may produce much bigger values than others due to the
nature of the feature. This may cause a preference for large features by
the classification model. To prevent this, all features are scaled to a
standard-normal distribution based on the range of feature values
found in the training dataset (Fig. 2, steps 2b and 2d).

2.4. Model definition

The actual classification of regions in coastal images is done using a
classification model (Fig. 2, step 3). As discussed in the Introduction of
ondingfilter response (middle) used to detect textures that are shore-parallel andGaussian
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this section, various model types are suitable for this learning task
(Koller and Friedman, 2009). In this study a model closely related to a
LR is used. A LR is an example of a model that performs classification
of individual superpixels without looking at the rest of the image; this
is known as an unstructuredmodel. A SVM is very similar to a LR, but op-
timizes the hinge loss function rather than the logistic loss function. The
difference between the two cost functions is actually very minor. Alter-
natively, a model that performs classification of individual superpixels
by taking their spatial context into account can be used; this is known
as a structuredmodel. A CRF and a SSVMare both examples of structured
models. The former optimizes the logistic loss function, whereas the lat-
ter optimizes the hinge loss function. Generally, unstructured models
are less complex, but structuredmodels perform better on image classi-
fication tasks. In this study, a SSVM is used, because of the increasedper-
formance compared to unstructured models and the availability in the
pystruct toolbox (Mueller and Behnke, 2014). The description of the
model as presented below can be found in Nowozin and Lampert
(2011).

For any of these models, the class of a superpixel is inferred by
choosing the class such that the prediction function is maximized, see
Eq. (1).

argmax
y∈Y

ωTΨ X; yð Þ ð1Þ

Here, y is the field of predicted class labels for all superpixels in the
image, Y is the output space consisting of all valid class labels, ω is a
learned parameter vector, T denotes the transpose and X is the n × m
matrix containing m feature values for all n superpixels in the image.
The joint feature function Ψ depends on the specific type of model
that is applied. In the case of the SSVM used in this study, the productωTΨ(X, y) is given by Eq. (2).

ωTΨ X; yð Þ ¼
Xn
i¼1

ω bð Þ
yi þ

Xn
i¼1

Xm
j¼1

ω uð Þ
j;yi

xi; j þ
Xn
i¼1

Xm
j∈N i

ω pð Þ
yi ;y j

ð2Þ

From this equation, it follows that the vector ω consists of three dif-
ferent types of parameters: a bias ω(b) for every valid class label, which
expresses the prevalence of a class over the other classes without
looking at a specific image or superpixel a unary potential ω(u) for
every possible combination of class and feature, expressing the degree
to which a feature characterizes a certain class a pairwise potential
Fig. 7. Structure of the model used for coastal image classification in this study. Every
superpixel is associated with a set of features through unary potentials (red dots) and to
its neighboring superpixels through pairwise potentials (red lines). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
ω(p) for every possible combination of two class labels. The latter is eval-
uated over each superpixel's connectivity neighborhood N and ex-
presses the credibility of two classes being assigned to neighboring
superpixels. In the case of the coastal imagery dataset, this will for ex-
ample yield that the class vegetation is less likely to border sea than
sand. The structure of the SSVM used in this study is visualized in
Fig. 7. In this study, the connectivity neighborhood of a superpixel con-
sists of the four superpixels it shares direct borders with, but can gener-
ally take any shape.

The parameter-vector ω has to be trained using a set of ℓ training
examples. To this end, the training dataset of annotated coastal images
is used (Hoonhout and Radermacher, 2014). The actual learning is
done by minimizing the regularized cost function given in Eq. (3).

minω
1
2
∥ω∥2 þ C

ℓ

Xℓ
k¼1

max
y∈Y

Δ yk; yð Þ þωTΨ X; yð Þ−ωTΨ X; ykð Þ� � !
ð3Þ

Note that y denotes the trained field of class assignments to each
superpixel, whereas yk refers to the annotated field of class assignments
to each superpixel in the kth image of the training set. The function
Δ(yk, y) computes the zero-one loss, which evaluates to zero when y
equals yk and one otherwise. The regularization parameter C can be cho-
sen freely and goes to reduce the risk of overfitting the training dataset.
It controls the balance between the two terms in Eq. (3). A lower value
of C assigns a relatively larger penalty to the sum of ω (the first term),
which reduces the range of values inω and reduces the difference in im-
portance of individual features (ω(u)) and class combinations (ω(p)) ac-
cordingly. Hence a lower value of C means more regularization and,
following a similar reasoning, a higher value of Cmeans less regulariza-
tion. As Eq. (3) is not differentiable everywhere, the one-slack formula-
tion of the regularized cost function as implemented by Mueller and
Behnke (2014) is used. Finally, the optimization is performed using
the cutting plane algorithm. More details can be found in Nowozin
and Lampert (2011).

2.5. Model evaluation

The performance of the model can be expressed as a percentage of
superpixel classes that have been predicted correctly by the trained
SSVM with respect to the manual annotation. However, doing these
predictions on images that have been part of themodel training dataset
would result in a too high percentage of correctly predicted superpixels,
as these images have actually been used to fitω. The key to model eval-
uation is determining to what extent the model generalizes to unseen
images. Hence, the full dataset of 192 annotated coastal images is split
into a part that is used for training the model (75% of all images) and
a part that is used for testing (25%) as done in many machine learning
applications (Koller and Friedman, 2009). As the performance of the
trainedmodel on predicting the validation setmight dependon the spe-
cific train-test partition that is chosen, five different partitions have
been applied in this study. This provides a way of expressing the
model performance as a statistical parameterwith amean and standard
deviation depending on the exact partitioning (Fig. 2, step 4).

2.6. Software

The methodology used is implemented in an open-source Python
toolbox called flamingo (Hoonhout and Radermacher, 2015). The tool-
box provides tools for (over)segmentation, classification and rectifica-
tion (projection in real-world coordinate system, see Section 3.2) of
images. It also provides a file and configuration structure for storing
datasets and corresponding analyses and a graphical user interface for
manual annotation of images. Among others, the toolbox relies on the
pystruct toolbox (Mueller and Behnke, 2014), the scikit-image toolbox
(van der Walt et al., 2014) for image classification and the opencv



Table 1
Model precision, sensitivity, F1-scores and occurrence. Values are averaged over all parti-
tions. Standard deviations are between parentheses.

Prec. Sens. F1 Occ.

Object 85.1 85.6 85.3 12.4
(2.0) (3.1) (3.2) (2.3)

Sand 94.1 93.6 93.8 32.5
(0.8) (0.6) (0.6) (3.9)

Sky 97.7 95.7 96.7 11.1
(1.2) (1.3) (0.5) (1.0)

Vegetation 93.4 92.3 92.8 16.2
(1.9) (0.6) (0.92) (3.4)

Water 93.5 94.3 93.9 27.8
(1.0) (1.8) (1.3) (5.0)
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toolbox (Bradski, 2000) for image rectification. The toolbox is also pub-
lished through the OpenEarth initiative (http://www.openearth.eu, van
Koningsveld et al., 2010).

3. Results

In this section, the performance of the model described in Section 2
is evaluated based on the 192 image ArgusNL dataset (Hoonhout and
Radermacher, 2014). Furthermore, two case studies are assessed as to
demonstrate the capabilities and applications of the trained model.

3.1. Testing

A commonway to summarize the results of a classification task is the
confusion matrix, which presents counts of all testing instances (i.e. in-
dividual superpixels in all testing images) based on their actual class
(ground truth labeling by manual annotation) and the class predicted
by the model. Summed over all partitions, this yields approximately
140,000 testing instances as shown in Fig. 8. The percentages in the fig-
ure are normalized per row. All entries on the diagonal of the confusion
matrix represent correct predictions by themodel, accounting for an av-
erage accuracy of 93.0% with a standard deviation of 0.7%.

These percentages can be elaborated further to evaluate the model's
ability to correctly predict specific class labels. To this end, various mea-
sures are used, among others precision and sensitivity. The precision of
amodelwith respect to class X is thepercentage of superpixels, out of all
superpixels predicted as X, that actually has the ground truth label X. It
can be computed by normalizing every entry in the diagonal of the con-
fusion matrix with the sum of its column. The sensitivity of a model
(also known as recall) with respect to class X is the percentage of
superpixels, out of all superpixels having ground truth label X, that
have been predicted as X. To compute sensitivity, every entry in the di-
agonal of the confusionmatrix should be normalizedwith the sumof its
row (as was already done for the percentages given in Fig. 8).

In the first two columns of Table 1, precision and sensitivity of all 5
classes are presented, averaged over the 5 partitions. The standard devi-
ation is given between parentheses. It is noted that evaluating these pa-
rameters for every partition and presenting the average value leads to
slightly different values than the sensitivity as evaluated for the cumu-
lative confusion matrix in Fig. 8. In order to combine precision and sen-
sitivity into a single performance metric, the F1-score was proposed by
van Rijsbergen (1979). Simply taking the average of both values would
mask cases where one is very high and the other is very low, e.g. in a
model that monotonously predicts every superpixel as sand, the class
Fig. 8.Aggregated confusionmatrix over all partitions. The percentages represent the sen-
sitivity of the model. The values between parentheses are absolute superpixel counts.
sand has 100% sensitivity, but very low precision. Instead, the harmonic
mean is taken according to Eq. (4), where P is precision and S is
sensitivity.

F1 ¼ 2
PS

Pþ S
ð4Þ

The third column in Table 1 lists the average F1-scores for all classes,
including their standard deviation between parentheses. The occur-
rence (i.e. the percentage of the ground truth data having class label
X) is added to characterize the composition of the testing dataset. Alto-
gether, themodel is specifically good at recognizing sky,water, sand and
vegetation and hasmost difficulties in recognizing objects. The confusion
matrix shows that, at most occasions, vegetation or sandwas erroneous-
ly recognized as objects and vice versa. None of the classes exhibit dis-
crepancy between precision and sensitivity values, which implies that
the model is well-balanced.

The trained unary potentialsωu give information about the strength
of every feature in distinguishing every class from the other classes. A
full analysis of feature strength would involve too much detail to treat
within the scope of this study, but as an example the top 5 features of
the class water are given in Table 2. Features are ranked by absolute
value of the unary potential. The overbar denotes averaging over all 5
partitions. The associated standard deviations over the partitions are
shown between parentheses. The top feature, mean_intensity.1, repre-
sents the superpixel-averaged intensity of the first image channel,
being the red channel. The strong negative unary potential indicates
that superpixels of class water tend to have low redness, a property
that was employed by Turner and Leyden (2000) for their shoreline de-
tection algorithm. Furthermore, the fifth ranked feature reflects a prop-
erty ofwater that corresponds most with the human perception: water
is blue. However, the negative potential of the second feature indicates
that uniformly blue pixels are not likely to be of class water. The third
feature, the maximum brightness in a superpixel, averaged over the
three intrinsic color channels, might refer to the presence of bright
foam patches associated with wave breaking. The fourth ranked feature
describes a far more complex property that is less intuitive to humans,
but, judging from its strong unary potential, is of great help in
distinguishing water from other classes.
Table 2
Top 5 features of class water. Values are averaged over all partitions. Standard deviations
are between parentheses. Channels and types refer to labels used in Hoonhout and
Radermacher (2014).

Feature ωðuÞ

Mean intensity (channel 1) −3.82 (0.58)
Min intensity (channel 3) −3.20 (0.40)
Max intensity 2.52 (0.52)
Weighted moments normalized (type 7.2) 2.48 (0.51)
Mean intensity (channel 3) 2.47 (0.28)

http://www.openearth.eu


Table 3
Pairwise potentials.

Object Sand Sky Vegetation Water

Object 3.32 2.16 −2.63 2.72 −0.74
Sand 3.19 −4.60 2.12 1.60
Sky −3.56 −3.58 −3.77
Vegetation 2.99 −1.70
Water 2.50
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In addition, the pairwise potentials can be studied to obtain informa-
tion about the likelihood of class-pairs being assigned to neighboring
superpixels. The upper half of the symmetric pairwise potential matrix
is given in Table 3. Several intuitive inter-class relationships can be de-
rived from the matrix, like the fact that sand is likely to border water,
vegetation and objects, but not likely to border sky. However, some of
the pairwise potentials require a more complicated interpretation,
that goes to show the sophistication of a structured classification
model like a SSVM. For example, the class sky only has negative pairwise
potentials, implying that predicting sky next to any other superpixel is
penalized by the model. Apparently, the model is very capable of
predicting sky solely based on the unary potentials, such that it can af-
ford the penalty from the pairwise potentials. By setting a penalty on
the pairwise potential, the model prevents sky from being erroneously
predicted at a location where the superpixel features are only vaguely
representing sky, but where the classes of surrounding superpixels
make the prediction of sky fairly likely.

To illustrate the performance of themodel, two examples of predict-
ed images are given in Fig. 9. The top row represents an image that was
well predicted by the model, having 97.6% of its class labels predicted
correctly. The snapshot was taken on a bright day with a very calm
sea, resulting in unambiguous and low noise feature values. The bottom
row illustrates what happens if the model makes predictions on a snap-
shot with more difficult weather conditions. Raindrops and dirt on the
camera lens obscure the image, leading to significantly different feature
values than those that dominate the training dataset. Although themain
outline of the predicted image is still correct, the model performance
breaks down around class interfaces and clusters of erroneous predic-
tions appear in the multicolored residential area.
Fig. 9. Examples of good (top) and bad (bottom)model performances. The original image is sho
model prediction (rightmost column).
Asmentioned in Section 2.4 themodel can befine-tuned using a reg-
ularization parameter C. In this study amoderate regularization of C=1
is used without further optimizing this parameter. Optimization of the
regularization parameter would require, next to the training and test
dataset currently used, an additional validation dataset with manually
annotated images. The test set could be split into a validation and test
set, but it was chosen not to do so to prevent the sets from becoming
too small. Training the model using different values for C, however,
shows that the chosen value of 1 is not far from the optimal value and
that the model does not suffer much from under- or overfitting
(Fig. 10). It should be noted that applying the algorithm on a different
dataset using images from different stations and/or with different clas-
ses may cause problems with under- or overfitting and hence may re-
quire optimization of the regularization parameter.

3.2. Case study: beach width and waterline

The range of possible applications of semantic classification of re-
gions in coastal images is very wide. Two case studies are treated in
this section to illustrate the application of the algorithm. In the next sec-
tion alternative applications are discussed.

3.2.1. Beach width
Beach width is regarded one of the most important parameters for

coastal managers (Kroon et al., 2007). Eroding beaches and, thus, de-
creasing beach width raise concerns about coastal safety against
flooding at locations all over the world. Furthermore, many coastal re-
gions owe the biggest part of their revenue to recreational tourism at
their beaches. Generally a wider beach provides higher safety and can
accommodate a larger number of visitors.

For this case study, a two year dataset of fortnightly images with
water levels aroundmean sea level (MSL) was composed, using images
from the Kijkduin Argus station. The trained SSVM presented in
Section 3.1 was used to classify these images. Using camera physics,
the classified images were projected onto a horizontal x–y plane at
MSL (Holland et al., 2001), as depicted in Fig. 11. Beachwidthwas deter-
mined in every transect of the projected image by taking the cross-shore
distance spanned by superpixels of class sand (constrained to the cen-
tral part of the projection, where the full cross-shore extent of the
wn in the leftmost column, together with the ground truth labeling (middle column) and



Fig. 10.Model performance over a single partition depending on the value of the regular-
ization parameter C.
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sub-aerial beach is covered in theprojected image). Thepredicted beach
width was reduced to a single value per image by taking the median
over all transects, so as to reduce scatter by erroneously classified
superpixels. The resulting evolution of beach width over time is pre-
sented in Fig. 12. Without any quality control, a linear trend is fitted
through the data points using least squares (solid line in the figure).
The trend line coincides with the main body of the data and indicates
a slightly eroding trend (8.4 m/year). Groundtruth data determined
from RTK–DGPS measurements with an all-terrain vehicle were added
to Fig. 12 for reference. To avoid randomness of the exact cross-shore
transect location, 7 in-situ transects coinciding with the image view
were selected. Beach width was extracted from these data by taking
the distance between the C.D. +4 m and 0 m marks. The mean beach
width over 7 transects is shown in the figure, including error bars of 2
times the standard deviation on either side. The beach width derived
from coastal imagery coincides fairly well with the in-situ data, al-
though the linear eroding trend of the latter (dashed line) is twice as
strong (16.9 m/year).

Scatter in the extracted beach widths is caused by several error
sources. First, erroneous class assignments, which either predict non-
sand superpixels as sand (overprediction of beach width) or vice-versa
(underprediction of beach width), cause a limited number of distinct
outliers up to O(100 m). Second, by using (generic) snapshot images
Fig. 11. Original coastal image (left) and rectified coastal image that is projected on a horizontal
references to color in this figure legend, the reader is referred to the web version of this article
the image data include variations in hydrodynamic conditions. Varia-
tions in water line position due to the tidal phase are canceled out by
using only images with water levels around MSL. Variations in water
line position due to wave run-up are limited to O(10 m) during the ob-
served period based on an empirical run-up formulation (Hunt, 1959)
and measured wave heights and periods. Third, inaccurate segmenta-
tion may cause the algorithm to fail providing pixel precise results,
which introduces errors ofO(1m) considering that the image resolution
around the water line is O(0.1 m).

3.2.2. Waterline
Although the primary product of coastal image classification is the

separation of different areas, the border between two areas is often a
useful product as well. The instantaneous waterline, being the border
between the sea and beach area, is an important indicator for coastal sci-
ence. By tracking the waterline over a sequence of images the width of
the intertidal area can be determined. Also, relating the instantaneous
position of the waterline to the tidal elevation provides a three-
dimensional bathymetry of this area (e.g. Aarninkhof et al., 2003;
Quartel et al., 2006; Uunk et al., 2010; Osorio et al., 2012).

A series of images from the Kijkduin Argus station at May 4th, 2014
is used for this case study. The Kijkduin Argus station consists of 6 cam-
eras, 4 out of which have the intertidal zone in view with sufficient res-
olution to extract instantaneous water lines. The trained SSVM
presented in Section 3.1 was used to classify these images. The images
are projected into a horizontal x–y plane atMSL (Fig. 11) and thewater-
line is simply determined by finding the first beach pixel seen from off-
shore. For each of these pixels the bed level is determined based on
RTK–DGPSmeasurements obtained frequently in this area. Consequent-
ly a series of points is obtained in three-dimensional space that are sup-
posedly located on the instantaneous waterline. From these points the
median value is taken in order to exclude outliers, caused by erroneous-
ly classified pixels, to obtain an estimate of the instantaneous water el-
evation at the water line.

Fig. 13 shows the astronomical tide measured in Scheveningen
(5 km north of Kijkduin) and the waterline estimates based on a 24-
hour sequence of coastal images from the Kijkduin Argus station. The
course of the astronomical tide is captured reasonably well, but also
some scatter is observed. The scatter can partially be explained by phys-
ical processes that decouple the instantaneous water level from the po-
sition of the water line. Wave setup and runup cause an additional
elevation of thewater line compared to the still water level. Local differ-
ences in morphology influence the wave propagation and hence the
x–y plane (right), including classification result (shaded colors). (For interpretation of the
.)



Fig. 12. Trend in beach width determined using image classification (black dots and line), compared to in-situ measurements (red triangles and line) in Kijkduin, The Netherlands. Red
error bars indicate a range of plus or minus one standard deviation of the in-situ beach width found over the stretch of beach in the camera view. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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alongshore and temporal differences in water line location. Also, the
classification procedure provides us with a location of the water line
in a horizontal plane. In order to compare this location to the vertical
tide the bed level along this line is determined based on ameasured ba-
thymetry. This bathymetry has a much coarser resolution (20 m along-
shore) than most of the image pixels. Therefore this conversion is an
approximation and a source of errors.

Despite the very generic approach, without any focus on particular
classes or regions of interest, and without any form of quality control,
theproposed classification technique already provides sensible and use-
ful data from raw coastal images. Yet several improvements, that are
outside the scope of this study, can be made. For example, both case
studies were based on raw snapshot images that contain considerable
noise, like variations in hydrodynamic conditions and anthropogenic
activities. By using derived image products, like time-averaged images
much noise can be removed and more homogeneous classes can be
learned improving the classification performance.

Another example is that the superpixels used in these case studies
are large compared to the width of the intertidal beach area and may
cover 10 m or more. Using a finer segmentation is expected to improve
the performance considerably. Superpixels that constitute the border of
the waterline might even be classified on a pixel-by-pixel basis to over-
come initial errors made in the segmentation step. Moreover, the seg-
mentation step itself may be improved as well by using the fact that a
series of images with temporal correlations between them is observed,
to ensure that water linemovement is continuous in time. Supervoxels2

can be used for this purpose rather than superpixels. All of these im-
provements can be applied within the proposed algorithm.
4. Discussion

The development of the algorithm initially started to track beach
widths over time and improve the robustness of algorithms for water-
line detection and intertidal bathymetry determination. The genericity
of the algorithm, however, sparked many possible additional applica-
tionswithin the very same framework. Among these are vegetation cov-
erage determination, people counters, aeolian feature detection, digital
elevation map correction, quality control, etc.
2 A supervoxel is a segmentation of the space–time domain, while a superpixel is a seg-
mentation of the space domain alone.
Obviously no algorithm is perfect and also this algorithm has some
pitfalls. First the segmentation step is recognized as a weak link in the
procedure. The segmentation step determines in an early stage what
pixels will be assigned the same class. An error made in this step can
cause a wrong classification on pixel level easily. For example, when a
white patch of foam is clustered together with a white portion of the
beach, it will be impossible to accurately detect the instantaneous wa-
terline. Currently, segmentation is only done based on the intrinsic
image features (RGB, HSV, etc.) and is therefore susceptible to errors.
Another pitfall is that the algorithm is particularly good at classifying
areas. Due to the structured learning (the inclusion of pairwise poten-
tials) it is unlikely that classification errors are made in the center of
such an area, for example, that a white patch in the middle of the sea
is predicted to be beach. Hence, most errors are made in the vicinity of
the borders, which is important to realize when, for example, applying
the algorithm to waterline detection (see also Fig. 9). For applications
likewaterline detection one can think of performing a-posteriori reclas-
sification. After a superpixel boundary has been classified as a sand–
water boundary, binary classification (sand–water) can be applied to
smaller superpixels or individual pixels surrounding the boundary.

Despite these pitfalls that still exist, the algorithm is proven to be ge-
neric and robust and shows unprecedented capability of classifying ar-
bitrary pixels in coastal imagery. Moreover, most pitfalls have still
Fig. 13. Waterline estimates based on a 24-hour sequence of coastal images in Kijkduin,
The Netherlands.



Fig. 14. Satellite image (left) and land-use classification (right) of prefecture of Chania on
the island of Crete, in Greece (Petropoulos et al., 2012).
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potential for improvement. Segmentation is now based on intrinsic
image features, but the filter channels, including information on edges
and textures, can also be used in the segmentation procedure. Similarly,
superpixels bordering an areamay be classified on a pixel-by-pixel basis
using the very same algorithm to obtain pixel precise classification.

The genericity of the algorithm is also apparent from the fact that
very similar algorithms are used in other fields of research that cope
with large amounts of image data, like remote sensing (Mountrakis
et al., 2011). Satellite images are automatically classified according to
land use or vegetation type (e.g. Fig. 14) and in medical sciences, auto-
mated classification of histology imagery is used to find malignant tu-
mors in an early stage (e.g. Belsare and Mushrif, 2012).

Compared to existing coastal image analysis techniques the pro-
posed algorithm uses an abundance of pixel features and relations be-
tween neighboring superpixels to distinguish one class of pixels from
another. Fig. 15 shows a simplified representation of the algorithm evo-
lution with respect to its percentage of correctly predicted pixels in the
testing dataset, starting from classification using intrinsic pixel features
only. After segmentation the number of features is boosted, increasing
the overall model performance considerably. The introduction of com-
plex texture and filter features, filter channels and structured learning
made the algorithm perform on the 93.0% accuracy level it is now.

Another major difference between the proposed algorithm and
existing algorithms for coastal image analysis is the fact that it fully
operates in pixel space, rather than in real-world coordinates. For
many coastal science and management applications it is useful to map
an image to real-world coordinates, but from the algorithms perspective
Fig. 15. Evolution of model scores averaged over all 5 partitions after increasing the number of f
ness cannot be determined from this graph since the order of improvements matters.
it is not necessary. This enables additional applications that do not re-
quire image rectification, like people counting, automated cropping
and quality control. Moreover, objects and regions in an image are de-
formed differently during rectification depending on their position in
the camera view due to varying real-world pixel resolution throughout
the image. This effect might deteriorate the performance of classifica-
tion algorithms that are based on rectified images.
5. Conclusions

The applicability of many existing algorithms for coastal image anal-
ysis is limited for the large, long-term coastal imagery datasets that are
presently available for coastal research, since they generally lack auto-
mation and robustness. Site- and time-dependent calibration is often
required. In this paper a fully automated algorithm is presented that
can cope with these large coastal imagery datasets and classifies each
pixel in a given image into a pre-defined set of classes.

The key to success of the approach presented here is the abundance
of image information that is used for discrimination of pixel classes. This
increase is achieved by combining oversegmentation of the imageswith
extensive feature extraction. Instead of relying solely on intrinsic pixel
information, a set of 1727 pixel features is extracted for every pixel in
the dataset and used to distinguish between five classes of pixels: object,
sand, sky, vegetation and water. Furthermore, a structured machine
learning approach was adopted in order to take relations between
neighboring pixels into account. Using a manually annotated dataset
of 192 coastal images, a SSVM is trained and tested to cast predictions
on the class of every pixel in the dataset. The resulting model correctly
classifies 93.0% of all pixels in an unseen image on average with a stan-
dard deviation of 0.7% computed over 5 train/test partitions. The model
performs well over all classes, which is indicated by the F1-score of 93%
or more for all classes, except for the versatile class objects that is still
reasonably accurate with 85%.

By analyzing the trained feature weights it was shown that the
model uses class characteristics that are very similar to human intuition,
like water is blue and heterogeneous, but also relies on more sophisti-
cated features that are less obvious for humans to interpret.

The application of the algorithmwas illustrated using two case stud-
ies that showed how this generic algorithm can be applied to extract
useful data like beach widths or water lines from a coastal camera sta-
tion without any form of manual quality control. This opens up new
possibilities to analyze large, long-term datasets of coastal imagery
and to apply these algorithms to different types of coastal images, in-
cluding webcams and mobile cameras. Both the annotated dataset and
the software developed to perform the model training and prediction
are provided open-source and free of charge.
eatures, filter channels and introducing structured learning. Note that the actual effective-
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6. Acronyms

LR logistic regressor
CRF conditional random field
SVM support vector machine
SSVM structured support vector machine
RGB red, green and blue
HSV hue, saturation and value
LAB lightness, color-opponent A, color-opponent B
CIELAB Commission Internationale de l'Éclairage LAB
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