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In most stereo-matching algorithms, stereo similarity measures are used to determine which image
patches in a left–right image pair correspond to each other. Different similarity measures may behave
very differently on different kinds of image structures, for instance, some may be more robust to noise
whilst others are more susceptible to small texture variations. As a result, it may be beneficial to use dif-
ferent similarity measures in different image regions. We present an adaptive stereo similarity measure
that achieves this via a weighted combination of measures, in which the weights depend on the local
image structure. Specifically, the weights are defined as a function of a confidence measure on the stereo
similarities: similarity measures with a higher confidence at a particular image location are given higher
weight. We evaluate the performance of our adaptive stereo similarity measure in both local and global
stereo algorithms on standard benchmarks such as the Middlebury and KITTI data sets. The results of our
experiments demonstrate the potential merits of our adaptive stereo similarity measure.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The objective of stereo matching is to estimate the depth of a
scene based on two rectified images that are obtained from two
cameras. The resulting depth image can be used in algorithms for
problems such as 3D reconstruction [1] and virtual view rendering
[2].

Stereo matching has been extensively researched over the past
decades [3]. There are two types of stereo algorithms: sparse and
dense algorithms. Sparse algorithms employ feature-based meth-
ods that match key-point locations. The resulting depth map is
sparse since there are locations without depth estimation [4,5].
In contrast, dense stereo algorithms produce depth estimations
at every pixel in an image using pixel-wise matching between
stereo views. Dense stereo matching algorithms can be further
grouped into two classes, namely, global and local stereo matching.
Global stereo matching algorithms make global smoothness
assumptions on the disparity image; this generally leads to high-
quality depth estimates but it is computationally expensive
[6–8]. By contrast, local stereo matching algorithms do not employ
such smoothness constraints; as a result, they are computationally
cheap but provide disparity estimates of lower quality [37,38].

Stereo algorithms estimate the disparity of a scene by matching
pixels/patches between the two rectified images. In general, they
are composed of four steps: (1) cost initialization, (2) cost aggrega-
tion, (3) disparity selection, and (4) disparity refinement [3]. The
first step is cost initialization, which is performed by matching pix-
els of the two rectified images. The resulting cost space is called the
initial disparity space image (DSI). In the matching, a variety of dif-
ferent similarity measures can be used, each of which may have
different characteristics. In the second step, cost aggregation is
applied on the initial DSI to filter out noisy matches that may have
arisen in the first step. In order to select a disparity for each pixel,
most of the algorithms use a winner-take-all approach as the third
step. In the winner-take-all approach, the disparity that has the
lowest matching cost at a particular image location is selected as
the disparity for that location. The fourth (optional) step aims to
refine the resulting disparity map by filtering out wrong matches
using global smoothness assumptions.

An important step in both global and local stereo matching
algorithms is the cost initialization. In both types of algorithms,
it is essential to obtain high-quality initial DSIs in order to obtain
good disparity maps [10–12]. Since stereo similarity measures
may perform differently depending on texture and noise varia-
tions, the quality of the initial DSI may be improved by using dif-
ferent stereo similarity measures for different parts of the image.
One way in which this can be achieved is by fusing similarities
adaptively based on their performance on different regions of the
image. (Note that adaptive fusion is very different than the non-
adaptive fusion scheme of [10,11,13].) In this paper, we propose
a new algorithm that fuses similarity measures adaptively based
on their performance on different image regions. Figs. 1 and 2
show two examples of the output of our algorithm, which illustrate
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that adaptive fusion of two similarities may enhance the accuracy
of final disparity estimations substantially.

The main contribution of this paper is a new algorithm for adap-
tive fusion of stereo similarity measures. Our adaptive fusion strat-
egy can fuse any number of stereo similarity measures without
introducing any similarity measure-dependent parameters. Our
fusion algorithm operated by evaluating the local performance of
each similarity measure at each image location using stereo confi-
dence measures [15,14,16–18]. The resulting confidence measures
are used to determine the weight of each of the stereo similarity
measures: more confident similarity measures are assigned a high-
er weight in the final ensemble. The fusion and confidence estima-
tion are performed on the initial DSI, which contains the pixel-wise
matching scores. To exploit spatial correlations and increase the
robustness of our fusion algorithm, we use a local consensus
between neighboring pixels when computing the weights. Each
neighboring pixel votes for the disparity of the center pixel propor-
tional to its confidence. The disparity that has the highest consen-
sus for the center pixel is chosen as the disparity of the center
pixel. The DSIs of the similarities that support the consensus dis-
parity are adaptively aggregated based on their confidences in
order to obtain the final fused initial cost measures.

The remainder of the paper is organized as follows: In Section 2,
we review existing literature that relates to similarity measures
and similarity measure fusion. In Section 3, we present our novel
adaptive fusion strategy. The experimental results are presented
in Section 4. We discuss our results and possible directions for
future work in Section 5, and draw conclusions in Section 6.

2. Related work

Most of the recent stereo research focuses on increasing the
accuracy of depth estimation by enhancing the performance of
aggregation methods [38,21,22]. At the same time, significant
improvements in performance have also be obtained by using
enhanced similarity measures [23–25] or by fusing multiple simi-
larity measures [10–12].

Fusion of multiple stereo similarities has been used in several
stereo algorithms. Wegner and Stankiewicz [12] took the multipli-
cation of any two similarity measures and obtain quality enhance-
ments for their view synthesis algorithm. However, multiplication
Fig. 1. Stereo results on example from the KITTI data set: (a) left image, (b) right image,
Census, (f) Proposed (AD + Census), resulting disparities: (g) AD, (h) Census, (g) Prop
substantially with the use of improved similarity measures.
of two similarity measures may fail to increase the accuracy if at
least one of the measures fail to find correct disparity. Klaus
et al. [10] fused the gradient and intensity similarities using
weighted-summation and obtained significant increase in accura-
cy. The weight is found experimentally and is not generalizable
to different similarity measures (it uses a similarity measure-de-
pendent parameter). Mei et al. [11] proposed fusing Census trans-
form and color measures by using exponential functions and
weighted averaging, which led to substantially better perfor-
mances. Different from the above-mentioned algorithms Sten-
toumis et al. [13] fused three similarity measures with constant
weights using exponential functions. However, for all of these algo-
rithms, the parameters of their fusion strategy are found
experimentally, they are static for all pixels, and are not generaliz-
able to all kinds of similarities. In contrast to this prior work, our
adaptive fusion strategy can fuse any number of similarity mea-
sures and does not require any similarity measure-dependent
parameters. Moreover, it fuses similarities adaptively to exploit
the benefits of different similarities in different regions of the
image.

To fuse different similarity measures, it is important to observe
which of the fused similarities perform better than the others at a
particular location of the image. Stereo confidences are used to
measure the confidence of stereo matching and to filter out the
wrong estimations. The matching is considered to be more accu-
rate as its confidence increases. An extensive evaluation of stereo
confidences are presented in [15]. The confidence measures is fre-
quently used at the refinement step of stereo matching to refine
the wrong matches [14,16–18]. Stereo confidences have further
been tested in applications producing stixel-world representations
[28]. In this work, we incorporate top performing stereo confidence
to assess the performances of various stereo similarities at differ-
ent locations of the image. This allows to compute adaptive
weights for the fusion of any number of stereo similarity measures.

Stereo matching is not always applied between two regular
camera views. One of the most challenging stereo matching prob-
lem is cross-modal stereo matching where the matched images dif-
fer in terms of their data structure such as stereo matching
between IR and RGB images [40,41]. Simple stereo similarity mea-
sures such as intensity, color, and gradient values of pixels in the
image provide reasonable performances as long as the stereo
(c) ground truth, initial similarity results: (d) Absolute intensity difference (AD), (e)
osed fusion strategy (AD + Census). The accuracy of the disparity maps changes



Fig. 2. Kinect cross-modal stereo results: (a) Color, (b) IR, (c) Raw depth, (d) AD, (e) Sobel, and (f) Proposed (AD + Sobel) fusion strategy. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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images are noise-free. However in the presence of noise and data
structure difference (such as cross-modal stereo), the performance
of such measures decreases significantly. Normalized cross-corre-
lation (NCC) [26] is an intensity and patch-based similarity mea-
sure that is robust against Gaussian noise in the two stereo
images. Zabih and Woodfill [23] introduced the rank and census
transform measures in order to increase robustness against radio-
metric difference between stereo pairs. Egnal [27] used mutual
information (MI) as a stereo similarity measure, which leads to a
matching algorithm that is robust under radiometric differences.
Their study showed that both MI and NCC provide reasonably good
performances. Hirschmuller and Scharstein [20] provided an
extensive evaluation study of the aforementioned similarity mea-
sures. The results of this evaluation show that the performance
of different measures highly varies with the image structure, which
provides a motivation for our adaptive similarity measures. In this
work, we show that the performance of cross-modal stereo algo-
rithms may be improved by the use of adaptive fusion algorithms.

3. Stereo matching with similarity fusion

A similarity measure may perform better than other measures
in a particular location in a stereo image depending on the kind
of image structure present at that location (such as at depth dis-
continuities, regular texture, and nearly homogeneous image
regions), whilst performing worse in other regions. For instance,
filter-based measures tend to blur object boundaries whereas
other measures do not [19]. As a result, the performance of stereo
matching may be improved by adaptively combining stereo simi-
larity measures with different characteristics according to their
(estimated) performance at a particular location. Below, we pre-
sent an adaptive fusion strategy that combines multiple stereo
similarities based on their performance in different image regions.

An overview of our adaptive fusion algorithm is shown in Fig. 3.
Our algorithm consists of two main stages. First, we calculate pix-
el-wise matching scores as in most other stereo matching algo-
rithms. This stage provides the initial cost measures for each
disparity per pixel, the so-called disparity space image (DSI). The
initial matching is done using each measure from a set of similarity
measures that are explained in detail in Appendix A. Second, we
compute the confidence of the matching at every image location
for each of the similarity measures using the confidence measures
presented by [15]. We use the confidence to compute weights for
all stereo similarity measures at all image locations. Our final
stereo similarity measure is given by a locally weighted combina-
tion of the stereo similarities. We discuss both stages of our algo-
rithm in more detail below.

The first part of our fusion strategy consists of building a mod-
ified initial DSI for each similarity measure that is based on our
confidence-based voting. To obtain more robust matching scores
and exploit spatial correlation without using aggregation over
the cost space, we construct a consensus set, Hðx; y; dÞ, that is built
for each pixel, ðx; yÞ. Our fusion strategy incorporates a stereo con-
fidence, Siðx; yÞ, to build the consensus and to weight the costs for
the fusion where i denote a similarity. Let ðxn; ynÞ be the pixels
around a neighbourhood Nðx; yÞ with size hw of a pixel ðx; yÞ and
let dn be the winner disparity of ðxn; ynÞ. Hðx; y; dÞ is defined as:
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lðdn;dÞ ¼
1; dn ¼ d

0; otherwise;

�
ð1Þ

Hðx; y;dÞ ¼
X
8i

X
ðxn ;ynÞ2Nðx;yÞ

Siðxn; ynÞliðdn;dÞ:

Each consensus set is built around a center pixel including the pixel
itself. Each pixel in the consensus set votes for the consensus dis-
parity of the set such that the weights of the votes are proportional
to the confidences of the pixels. The consensus disparity, d�, is
selected by taking the disparity that received most votes:

d� ¼ argmax
d
ðHðx; y; dÞÞ: ð2Þ

The fusion is applied to the DSIs of the similarities to obtain a single
(fused) DSI for the aggregation step of the matching. Hence, the con-
sensus disparity cannot be used directly in the fusion step of the
stereo similarities. Moreover, the DSI of the center pixel in each con-
sensus set does not necessarily support its consensus disparity.
Therefore, to use the consensus result in the fusion step of the simila-
rities, the initial DSIs of the center pixels should be modified accord-
ing to their consensus disparity. To modify the initial DSIs of each
center pixel such that it supports the consensus disparity without
doing computationally expensive aggregation over the cost space,
we assign the DSI of the pixel in the consensus set that favors the con-
sensus disparity with the highest confidence for each similarities:

n� ¼ argmax
n
ðSiðxn; ynÞliðdn; d

�ÞÞ; ð3Þ

C�i ðx; y;dÞ ¼ Ciðxn� ; yn� ;dÞ: ð4Þ

In the second stage, the DSIs of all of the similarity measures
C�i ðx; y; dÞ are aggregated adaptively using weighted average with
respect to their confidence:

wi ¼
Siðx; yÞP
8iSiðx; yÞ

;

Cf ðx; y;dÞ ¼
X
8i

wiC
�
i ðx; y; dÞ; ð5Þ

where Cf ðx; y; dÞ is the fused DSI measure for the pixel at location
ðx; yÞ.

It is important to note that our algorithm can be used to fuse
any number of similarity measures without introducing any simi-
larity measure-dependent hyperparameters.

4. Experiments

We evaluate the performance of our algorithm by performing
several experiments on benchmark Middlebury [3] and KITTI [32]
data sets. The Middlebury stereo dataset has images of size
400� 375 approximately, whereas KITTI dataset images have sizes
around 1200� 370. We evaluate the performance of the stereo
algorithms by measuring the percentage of disparity estimates that
has a difference of more than one compared to the ground truth
disparity. We also evaluate the number of errors in specific parts
of images such as non-occluded parts and locations close to dis-
parity discontinuities. Our algorithm has only one hyperparameter,
which is the consensus window size, hw.

The performance of our algorithm depends on the performance of
the stereo confidence measure used. In Section 4.1, we investigate
the effect of different stereo confidences on the performance of
our fusion strategy; we select the best-performing confidence for
the remaining experiments. Specifically, we performed experiments
using four different stereo confidence measures. To test the effect of
hw and to select the optimum value, we performed experiments with
our fusion strategy using different consensus window sizes in Sec-
tion 4.2. In Section 4.3, we tested our fusion strategy with all stereo
similarities and compare its accuracy with (non-adaptive) fusion
strategies presented in prior work. Intensity is the cheapest stereo
similarity measure to extract. Almost all works on fusion aim to fuse
intensity with a more complex similarity measure to achieve higher
accuracies. In Section 4.4, we also fuse intensity in a similar way with
other similarity measures and compare our strategy’s performance
with that of other strategies. To further compare the performance
of our algorithm with the fusion strategies presented in prior work,
we evaluate our algorithm in terms of initial matching cost improve-
ments by using constant window aggregation (Section 4.5) and glob-
al energy minimization (Section 4.7). For all of the above-mentioned
experiments, we used the Middlebury data set [3]. The errors are
measured for all pixels (all), pixels that are not occluded (non-occlu-
sion), and pixels that are close to disparity discontinuities and not
occluded (dis-occlusion). These regions are shown in Fig. 4. To test
our fusion strategy on a larger, more challenging dataset, we also
performed experiments on the KITTI data set, comparing the perfor-
mance of our algorithm to that of a state-of-the-art local stereo
matching algorithm (Section 4.8).

4.1. Performance of stereo confidence

We performed experiments to find out which confidence measure
provides the best results in our fusion strategy. In this experiment, we
set hw ¼ 3. We experimented with the LRD, PKRN, MLM and LC con-
fidence measures that are described in Appendix A on the Middlebury
data set. We fused all of the eleven stereo similarities that are
presented in Appendix A. The results of our experiment are shown
in Fig. 5. The results show that LRD outperforms other confidences
for almost all images and regions. The difference is most noticeable
in the Cones dataset where LRD substantially outperforms other con-
fidences in discontinuous regions. In our further experiments, we
used LRD as the confidence measure for our fusion strategy.
4.2. Experiments with different consensus window sizes

The only hyperparameter of our fusion strategy is the consensus
size, hw. Although it is a similarity measure-independent para-
meter, it may still effect the final fusion results. Therefore, we test-
ed the performance of our algorithm using various consensus
window sizes. Fig. 6 shows the error as a function of the value of
hw. As hw increase, more neighboring pixels vote in the consensus
and the accuracy increases. However as Fig. 6b shows, the perfor-
mance near discontinuous regions decreases as hw increases.
Although it is possible to achieve higher accuracies with larger
consensus window sizes, in this paper, we therefore opt to use a
consensus region of 3� 3 pixels in the rest of our experiments.

4.3. Fusion of all similarities

Although it may be computationally impractical to compute all
of the similarities, we did perform an experiment fusing eleven
similarities in order to see the overall performance of our fusion
strategy. We tested our strategy against straightforward fusion
methods. The methods that we compared with are:

� Most utilizes the initial DSI of the most confident similarity
measure for each location.
� Avg is the fusion strategy that takes the average of all of the

similarity measure’s costs.
� Mult [12] is based on the multiplication of cost values of each

similarity measures.
� Conf denotes the adaptive aggregation of initial DSI using the

weights that are obtained from the LRD confidence of the simi-
larity measures at each pixel. This is equivalent to the second
part of our fusion strategy without the first part.



Fig. 4. (a) Color image, (b) ground truth disparity image, (c) non-occlusion pixels, and (d) dis-occlusion pixels, the pixels where the errors are evaluated are indicated in white.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Percentage of erroneous disparity values of four different stereo confidence measures in the fusion of eleven similarity measures with our fusion strategy in: (a) non-
occluded, (b) all, and (c) discontinuous image regions.
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Fig. 6. The performance of our algorithm with respect to different consensus region sizes, hw , for: (a) all pixels (all), (b) pixels at dis-occlusion regions (disc).
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� Voting uses our consensus strategy but without confidences.
The confidence in the disparity voting is always equal to 1. Fur-
thermore, the cost functions of similarities are averaged rather
than confidence-weighted aggregation.
� Voting + Conf is based on our consensus strategy and adaptive

aggregation of the similarities using LRD confidence measure.

Table 1 shows the performance of eleven different similarity
measures on the Middlebury image pairs. In general, the best per-
forming similarity measure is the census transform. The census
transform is also one of the most computationally expensive simi-
larity measures. AD is computationally the cheapest similarity
measure, and it still outperforms LoG and MI. Pfeiffer et al. [28]
has shown that MI does not perform well without global smooth-
ing. This result is confirmed by our results: MI performs poorly in
the initial stereo matching stage. BT and Mean perform better than
MI but not significantly better than intensity. NCC and ZNCC
appear to be the best alternatives to the census transform.

Table 2 presents the results of combining all similarity mea-
sures with different fusion strategies. The best performer in all of
the data set image pairs and in all image regions is our proposed
strategy, Voting + Conf. Voting using our consensus algorithm also
performs significantly better than all of the individual similarity
measures. Even with the initial DSI, the Conf strategy performs bet-
ter than the Avg strategy in discontinuous image regions, which
illustrates the importance of using confidences in fusion. Further-
more, using Voting without confidences leads to worse accuracy,
which also emphasize the effect of confidence on fusion. Directly
choosing the highest confidence is not a good strategy for the
fusion because it provides worse accuracy compared to most other



Table 1
Percentage of erroneous disparity values of individual similarity measures.

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

AD 21.5 23.2 21.6 27.2 28.4 30.7 35.7 42.2 41.3 37.4 42.2 40.5
Rank 29.8 31.2 34.0 23.8 30.8 33.6 36.1 42.5 43.9 23.0 31.5 36.0
Census 17.1 18.8 22.6 12.6 14.0 25.0 15.0 23.6 28.7 7.1 17.2 17.6
NCC 16.5 18.2 26.6 13.4 14.8 30.4 16.7 25.2 33.7 9.7 19.9 25.9
ZNCC 18.6 20.3 27.2 13.8 15.3 32.3 18.6 27.0 36.4 10.5 20.6 26.3
Sobel 23.4 25.0 32.2 27.7 28.9 36.5 40.7 46.7 48.3 28.6 36.4 41.9
LoG 38.4 39.7 43.8 41.5 42.4 49.9 54.0 38.6 60.7 40.7 47.2 53.5
Mean 20.4 22.2 37.2 22.6 23.9 46.6 28.8 36.0 45.6 19.5 28.4 41.6
BT 20.5 22.3 21.3 26.9 28.1 28.2 36.2 42.6 42.2 40.2 46.6 42.0
MI 33.3 34.6 35.1 40.4 41.3 42.5 52.8 57.6 60.2 49.1 54.6 57.1

The bold values represent the lowest errors.

Table 2
Percentage of erroneous disparity values of proposed algorithm with eleven different similarity measures and comparison with various fusion strategies.

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Most 14.4 16.3 21.1 12.5 13.9 26.3 15.9 24.6 28.6 7.79 18.2 18.8
Avg 13.9 15.7 21.3 12.1 13.5 27.3 14.0 22.9 27.3 6.64 17.2 17.2
Mult [12] 27.9 29.4 31.2 25.0 26.3 36.2 29.4 36.7 38.3 19.1 28.2 30.0
Conf 13.6 15.5 20.6 12.1 13.5 25.7 14.8 23.6 27.3 6.79 17.3 17.2
Voting 11.6 13.5 18.2 9.6 11.1 23.3 12.4 21.4 25.1 5.4 15.8 14.8
Voting + Conf 11.3 13.1 17.8 8.2 9.7 23.8 12.1 21.0 25.1 5.1 15.5 13.6

The bold values represent the lowest errors.
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strategies (with the exception of Mult [12]). Mult is the worst per-
former in our experiments, presumably, because errors in any of
the similarity measures can significantly affect the final result.

4.4. Fusion of intensity (AD) similarity with other similarities

Intensity is computationally the cheapest stereo similarity mea-
sure for stereo matching. Therefore, various prior studies aim to
fuse intensity with more complex similarities to increase the accu-
racy. In this experiment, we fuse all of the ten stereo similarities
with intensity and compare our results with other fusion
strategies.

Table 3 presents the results for the fusion of different similarity
measures with the intensity similarity measure. The accuracy of
the fused measures are higher than their individual accuracies
except for the NCC measure. This is mainly because LRD does not
perform as good with NCC as it performs with other measures.
The best performer of this experiment is AD + Census. The indi-
vidual accuracy of MI is one of the worst compared to other mea-
sures, however, its performance significantly increased when it is
fused with intensity.

Fig. 7 shows the results of our adaptive fusion algorithm when
used to fuse AD and census similarities on Middlebury data set. The
Table 3
Percentage of erroneous disparity values that are obtained from the fusion of all similarit

Tsukuba Venus

nonocc all disc nonocc all d

AD + Rank 17.8 19.5 21.1 18.9 20.2 2
AD + Census 11.4 13.2 15.8 7.8 9.3 2
AD + NCC 13.8 15.5 16.7 18.0 19.2 2
AD + ZNCC 12.7 14.5 17.9 8.6 10.1 2
AD + Sobel 12.4 14.2 18.2 16.3 17.7 2
AD + LoG 14.9 16.7 18.6 19.5 20.8 2
AD + Mean 12.7 14.5 22.2 15.6 16.9 3
AD + BT 14.3 16.0 15.9 18.5 19.8 2
AD + MI 14.1 15.8 18.0 17.2 18.5 2

The bold values represent the lowest errors.
improvements that are achieved by fusion are indicated in red. For
all images, the results of fusion are substantially better than the
individual results of each of the fused similarities.

4.5. Constant window aggregation

To explore the performance of our algorithm with respect to
other fusion strategies, we perform two experiments with
AD–Census and AD–Sobel features in constant window aggrega-
tion-based stereo matching. AD and Census features are fused
using exponential functions by Mei et al. [11] in order to obtain
higher accuracy using the function:

CACðx; y;dÞ ¼ 2� e
�CADðx;y;dÞ

r2
AD � e

�CCensus ðx;y;dÞ
r2

Census ; ð6Þ

where rAD and rCensus are set to 10 and 30, respectively. Additionally,
Klaus et al. [10] fused Gradient and AD features linearly (weighted
average) via:

CWAðx; y;dÞ ¼ ð1� aÞCADðx; y; dÞ þ aCSBðx; y;dÞ: ð7Þ

The optimal a for CWAðx; y;dÞ is not explicitly given by Klaus et al.
[10]. We tried different a values and experimentally found that set-
ting a equal to 0:9 gives the best results. We also use the multipli-
ies.

Teddy Cones

isc nonocc all disc nonocc all disc

4.0 21.2 29.3 29.3 9.6 19.7 18.7
0.5 11.6 20.6 23.5 4.9 15.4 12.7
6.6 22.3 30.0 32.7 20.0 28.7 26.2
5.3 13.0 21.9 27.6 6.3 16.7 16.0
4.5 22.2 30.2 30.9 10.1 20.1 19.8
8.7 25.3 32.9 33.7 17.1 26.3 25.6
5.7 18.3 26.6 31.8 10.6 20.5 23.2
4.1 28.0 35.3 34.4 27.6 35.5 29.9
4.6 27.0 34.4 34.2 24.0 32.3 28.7



Fig. 7. From left to right: Color images, ground truth disparities, AD similarity, Census similarity, Proposed algorithm results (AD + Census) respectively. Some of the notable
differences are marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cation of initial DSI of two features (MULT) in accordance with
Wegner and Stankiewicz [12] as:

CWACðx; y;dÞ ¼ CADðx; y;dÞ � CCensusðx; y;dÞ; ð8Þ
CWWAðx; y;dÞ ¼ CADðx; y; dÞ � CSBðx; y;dÞ: ð9Þ

Stentoumis et al. [13] fused three similarities, AD, Census and Gra-
dient using exponential functions similar to Mei et al. [11]:

CACGðx; y; dÞ ¼ 3� e
�CADðx;y;dÞ

k2
AD � e

�CCensus ðx;y;dÞ
k2

Census � e
�CSBðx;y;dÞ

k2
SB ; ð10Þ

where k2
AD; k

2
Census, and k2

SB are set to 5;45 and 18, respectively.
The results of our experiments for different-sized aggregation

windows are presented in Fig. 8. The results are averaged over all
of the four data set images and errors are evaluated over all pixels
in the images. In both of our experiments, AD is the least accurate
similarity measure after aggregation. In the fusion of AD with Cen-
sus experiment in Fig. 8a, our algorithm performs the best, in par-
ticular, for smaller aggregation windows. Mei et al. [11] performs
on par with the census similarity for smaller-sized windows. Yet,
census outperforms Mei et al. [11] when the aggregation window
size increases. In the fusion of AD with Sobel similarity experiment,
our proposed method is the best performer for all sizes of the aggre-
gation window, as shown in Fig. 8b. Sobel similarity and the method
by Klaus et al. [10] performs similarly in terms of accuracy. Yet, for
smaller sized windows, the method of Klaus et al. [10] performs
slightly better than Sobel and significantly better than the algo-
rithm based on AD similarities. For the fusion of three similarities,
the method by Stentoumis et al. [13] performs on par with the cen-
sus transform whereas our fusion strategy performs the best espe-
cially for small aggregation window sizes. In all of the experiments,
the accuracy is saturated to a constant value when the aggregation
window size approach to its largest size (13� 13). The reason for
this is as the aggregation size increases, the disparities near discon-
tinuities in the image are smoothed. In all of our experiments, the
multiplication of different initial DSIs (Mult) performs better than
AD. However it does not perform better than the other measures
or than any of the other fusion strategies.

4.6. Execution time

In general, computational speed is an important parameter of
the matching algorithms. In order to decrease the execution time
of fusion, we fuse similarity measures before the aggregation step.
Therefore, we do not perform aggregation for each of the similarity
measures. Table 4 presents the execution times that are required
for different fusion strategies with sequential coding. Because of
their simplicity, the methods by Klaus et al. [10], Mei et al. [11],
and Stentoumis et al. [13], as well as the Mult [12] method are fas-
ter than our fusion strategy. The most computationally expensive
parts of our fusion strategy are the extraction of confidence map
(0.16 s) and constructing the consensus (0:12 s), which is highly
parallelizable. However, the execution time of our algorithm is still
lower than the straightforward constant window aggregation for
window sizes larger than 7� 7 as depicted in Table 5.

Let N be the total number of pixels, H be the size of the consen-
sus, I be the number of similarities to be fused, and D be the total
number of disparities, Our algorithm complexity is OðNIðH þ DÞÞ.
Fusion strategies with static weights [11,10,12,13] has the com-
plexity of OðNðH þ DÞ. Therefore, our fusion strategy is OðIÞ worse
in terms of complexity than other algorithms. However, since our
calculations are mostly independent, our fusion strategy is highly
parallelizable.

4.7. Effect of fusion on global energy minimization

Global energy minimization (GEM) algorithms such as graph-
cuts are widely used in stereo matching [33–36]. The main benefit
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(c) Color, Census and Sobel Fusion

Fig. 8. The proposed algorithm performance with respect to (a) AD and Census similarity measures, Mei et al. [11] and Mult [12], (b) AD, Sobel similarity measures, Klaus
et al. [10] and Mult [12], and (c) Color, Census, Sobel similarity measures, Stentoumis et al. [13] and Mult [12]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 4
The execution times of different fusion strategies on a computer with Intel Xeon E3-1270 processor.

AD Sobel Census Klaus et al. [10] Mei et al. [11] Stentoumis et al. [13] Mult [12] Proposed

Time (s) 0.17 0.18 1.05 0.01 0.01 0.01 0.005 0.3

Table 5
Time required to apply aggregation on a computer with Intel Xeon E3-1270 processor.

3 � 3 5 � 5 7 � 7 9 � 9 11 � 11 13 � 13

Time (s) 0.13 0.27 0.5 0.79 1.15 1.57
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of using GEM is that the pairwise interactions between disparity
estimates at nearby image locations smooth the final disparity esti-
mates. As a result, stereo algorithms with GEM generally construct
better disparity maps.

We tested one of the most commonly used GEM algorithms,
graph-cuts (GC), with our fusion strategy. In our experiments, we
used the same parameters and configurations for all of our tests
as suggested in [36]. The left borders of the reference images are
the regions which cannot be matched effectively because they do
not exist in the target image. Therefore, the matching costs on
the left borders of all images are penalized in order to prevent
biased smoothing for different similarities. Table 6 shows the
quantitative results of single similarity measures for fusion and
fusion strategies. As before, census is the best performer among
the individual similarity measures. The methods by Mei et al.
[11] and Klaus et al. [10] do not achieve better results than their
single best-performing similarity measures (census and Sobel) in
any of the experiments. This result illustrates the potential of
incorporating (adaptive) fusion strategies in stereo matching. Since
multiplying similarity measures amplifies errors, Mult [12] per-
forms the worst in all of our experiments. Our strategy achieves
the best results on the Teddy and Cones image pairs, and it per-
forms on par with other measures on the Tsukuba and Venus
image pairs. These results indicate the importance of having accu-
rate initial disparity estimations for stereo algorithms with global
energy minimization. For the fusion of three similarities, our algo-
rithm performs the best for all of the images except only for one
image on its discontinuity locations. As more similarities are fused
with static weights, it becomes non-trivial to set the optimal
weights experimentally. Hence, our adaptive strategy becomes
more effective as the number of stereo similarity measures
increases.



Table 6
Percentage of erroneous disparity values of GC algorithm that is applied to: Single Similarities (S. Sim.), fusion of AD and Census (A.C.), fusion of AD and Sobel (A.S.), and fusion of
AD, Census, and Sobel (A.C.S). The best results for each test group is underlined and the best results of the overall test are marked as bold.

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

S. Sim. AD 6.4 8.2 23.0 3.3 4.5 23.8 33.9 40.7 45.9 14.6 23.1 27.1
Sobel 3.2 5.1 16.1 1.7 2.7 20.7 12.3 21.1 30.4 9.0 17.5 22.4

Census 4.6 6.4 14.7 1.4 2.3 16.4 10.7 19.5 28.7 7.5 16.0 18.0

A.C. Mei et al. [11] 16.5 17.7 46.7 14.3 15.4 36.5 41.6 47.4 63.9 27.1 33.5 42.2
Mult [12] 10.8 12.5 33.9 7.5 8.7 29.9 41.8 47.7 55.6 16.4 24.2 29.5
Proposed 4.5 6.3 14.3 1.4 2.4 16.2 10.1 19.0 26.8 7.2 15.8 16.9

A.S. Klaus et al. [10] 3.2 5.1 16.1 1.8 2.8 20.7 13.6 22.6 32.1 8.9 17.4 22.0

Mult [12] 11.0 12.7 33.9 8.7 9.7 33.6 41.9 47.7 53.8 17.3 24.9 31.1
Proposed 3.3 5.2 15.5 1.8 2.9 21.3 12.0 20.7 30.2 8.2 16.8 19.9

A.C.S Stentoumis et al. [13] 5.5 7.5 15.3 2.7 3.7 19.1 12.9 21.5 26.8 7.8 16.4 18.5

Mult [12] 14.5 16.4 20.0 15.7 17.1 25.7 19.1 27.3 28.1 9.9 19.9 20.3
Proposed 4.4 6.3 14.9 1.6 2.5 17.4 10.7 19.5 27.7 7.4 16.0 17.5

Table 7
The mean and standard deviations of erroneous disparity percentage of [38]
algorithm that is applied to: Single Similarities (S. Sim.), fusion of AD and Census
(A.C.), fusion of AD and Sobel (A.S.), and fusion of AS, Census, and Sobel, and averaged
over KITTI dataset. The best results for each test group is underlined and the best
results of the overall test are marked as bold.

nonocc occ

S. Sim. AD 31.8 ± 13.6 33.3 ± 13.4
Sobel 27.4 ± 7.5 28.9 ± 7.4
Census 11.8 ±5.9 13.7 ±6

A.C. Mei et al. [11] 13.8 ± 7.3 15.8 ± 7.3
Mult [12] 22.6 ± 9.7 24.4 ± 9.6
Proposed 11.2 ±5.6 13.2 ±5.6

A.S. Klaus et al. [10] 26.3 ±7.5 27.8 ±7.4
Mult [12] 28.7 ± 9.3 30.3 ± 9.2
Proposed 24.4 ±7.2 26.0 ±7.1

A.C.S. Stentoumis et al. [13] 17.3 ± 9 19.1 ± 9
Mult [12] 25.4 ± 7.9 27.1 ± 7.9
Proposed 11.2 ± 5.7 13.1 ± 5.7
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4.8. Results on the KITTI data set

The KITTI data set is a recently released benchmark that con-
tains real-world images. KITTI contains 194 test images with
ground truth depth captured by a Volodyne laser scanner. The
ground truth is available for both occluded and non-occluded sur-
faces. The error is calculated by finding the percentage of the pixels
that has a difference between estimated and ground-truth of more
than three pixels.
Fig. 9. Stereo results from KITTI dataset: (a) left image, (b) right image, (c) ground
One of the most popular local stereo algorithms in the literature
is adaptive-support weight of Yoon and Kweon [9]. The algorithm
[37] aggregates initial cost measures adaptively to obtain accurate
depth estimations that preserves the depth discontinuities. As a
further improvement, Hosni et al. [38] incorporated edge-preserv-
ing bilateral filtering [39] over the initial cost space as aggregation
step to preserve the sharpness of disparities at discontinuity loca-
tions. In order to evaluate the performance of our adaptive fusion
strategy in state-of-the-art local stereo matching algorithms, we
integrated our fusion algorithm with edge-preserving bilateral fil-
tering [39,38] and tested it on the KITTI data set. The mean and
standard deviation of the errors over all images are presented in
Table 7 for both non-occluded and occluded image regions. Our
algorithm performs the best overall and in each of different fusion
classes. Since census significantly outperforms the other measures,
the improvement with census is not as large as with AD and Sobel.
Our fusion strategy outperforms the best performer of the fused
similarity measures in all cases. Fig. 9 shows an example of the
result of our fusion algorithm on the KITTI data set. Supporting
to our previous results with global energy minimization, our algo-
rithm clearly outperforms the method of Stentoumis et al. [13]. The
method of Mei et al. [11] also outperforms Stentoumis et al. [13],
which shows that using static weights to fuse multiple similarities
get less efficient as the number of similarities increases.

4.9. Cross-modal stereo between infra-red and RGB views

The Microsoft Kinect depth sensor was introduced in 2010 as a
human–computer interaction device that can provide high resolu-
tion depth maps of a scene in real-time. Kinect can recover the
truth, resulting disparities: (g) AD, (h) Census, and (g) Proposed (AD + Census).



Fig. 10. Kinect cross-modal stereo results: (a) Color, (b) IR, (c) Raw depth, (d) AD, (e) Sobel, (f) Census, (g) Klaus et al. [10], (h) Mei et al. [11], (i) Mult (AD + Sobel) [12], (j) Mult
(AD + Census), (k) Proposed(AD + Sobel), (l) Proposed (AD + Census). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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depth of many kinds of surfaces but it cannot measure depth on
transparent objects. In order to obtain sparse depth estimations
on these objects, Chiu et al. [40,41] proposed to use cross-modal
stereo between the infra-red (IR) and RGB cameras of the Kinect.
Since the IR and RGB views are not structurally the same, the main
challenge in cross-modal stereo is to find as many reliable matches
as possible. Therefore, the development of robust similarity mea-
sures is essential in using cross-modal stereo.

We tested our fusion strategy for cross-modal stereo and com-
pared it with different fusion strategies and individual similarity
measures. Fig. 10 presents the results of the tested measures. The
black regions are the regions where the stereo match has not
enough confidence. The regions with color indicate locations
where there are significant differences between different algo-
rithms. Our algorithm produces the densest correct matches in
most of the indicated locations. This result shows the importance
of robust fusion strategies in challenging stereo problems.
Although our fusion strategy achieves improved results compared
to single similarities and other fusion strategies, there are still
errors in the measurements. These errors are likely the result of
the fact that our fusion strategy also relies on the performance of
its similarities. When none of the similarities achieves correct esti-



Fig. 11. Performances of stereo similarity measures on Tsukuba image in Middlebury stereo dataset: (a) Ground truth, (b) AD, (c) RGB, (d) Mean, (e) BT, (f) Rank, (g) Census,
(h) NCC, (i) ZNCC, (j) Sobel, (k) LoG, and (l) MI.
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mations on a particular image region, such as a specular surface,
our fusion strategy cannot improve the accuracy: any fusion algo-
rithm is limited by the performance of its inputs.
5. Discussion

Our experimental results illustrate the potential of adaptive
stereo similarity fusion on the accuracy of stereo matching. In this
section, we further elaborate on the potential merits of our fusion
strategy, and we discuss possible improvements as well as possible
limitations of our approach.

5.1. Effect of confidence

The most common way of fusing similarity measures is to
weight each measure and combine them using manually defined
functions, such as via direct aggregation [10] or using exponentials
[11]. Our experiments show that using confidence-guided weights
for the fusion of similarity measures may improve stereo matching
results substantially compared to constant-weight fusion algo-
rithms. This happens because each similarity measure may per-
form differently at different locations of the image. The
incorporation of confidences can be further applied to cost aggre-
gation step of stereo matching algorithms where adaptive window
sizes can be used with the guidance of stereo confidences rather
than constant window sizes through the image.

5.2. Effect of consensus

Stereo similarity measure algorithms in the literature use pixel-
wise weighted sums of initial cost measures. However, to fuse dif-
ferent similarity measures, it is important to exploit spatial corre-
lation between neighboring pixels since pixel-wise measures tend
to be noisy. Additionally, confidence measures are not very precise
on the noisy initial DSI. Therefore, the accuracy of fusion substan-
tially increased when we incorporated a consensus strategy. Our
experiments also show that as consensus window size increases,
it violates disparity discontinuities and the performance on discon-
tinuous image regions decreases. To address this problem, discon-
tinuity-preserving windows can be investigated for building the
consensus.

5.3. Effect of improvement on the initial DSI

In this work, we also show that improvements in the initial cost
measurements can substantially affect the final result of the stereo
algorithm. Additionally, improvements in the initial cost measure-
ments can further increase the performance of stereo algorithms
on challenging stereo problems such as cross-modal stereo
matching.

5.4. Possible limitations

Our algorithm improves initial cost measures substantially and
this improves the final result. However the errors caused by the
remaining steps such as aggregation and refinement may damage
the improvements that are achieved at the initial step. For exam-
ple, smoothing the image substantially without preserving the dis-
parity discontinues at the refinement step may eliminate the
improvements of our fusion strategy in discontinuous image
regions. This is one of the reasons why the fusion algorithms do
not always obtain the top accuracy with the global energy
minimization algorithm in our experiments.

Fusing many similarity measures is one of the capabilities of our
fusion strategy. However, our experiments show that fusing simi-



Fig. 12. The performances of stereo confidences. Brighter regions show confident estimations whereas darker regions are less confident estimations: (a) color, (b) disparity (c)
LRD, (d) PKRN, (e) MLM, (f) LC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The improvements that are achieved by fusion of intensity and sobel similarity measures: (a) intensity, (b) Sobel, (c) Proposed fusion. The red region shows where
intensity is better than sobel. On the contrary, green region shows where sobel is better than intensity. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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larity measures that perform not as good as others does not
improve the fusion results. Using stereo confidences with better
performance may improve the fusion performance and circumvent
this problem.

5.5. Possible future directions

Similar problems as in stereo matching arise in medical image
registration where the aim of the registration is to find the map-
ping (displacement) of one image to the other. Cost functions such
as NCC and MI are commonly used in such image registration prob-
lems. As future work, we aim to generalize our adaptive fusion
algorithm to medical image registration problems.
6. Conclusion

In this paper, we presented a novel adaptive fusion algorithm
for stereo similarity measures, which uses stereo confidences to
determine the fusion weights. To the best of our knowledge, our
stereo fusion algorithm is the first that does not require any simi-
larity measure-dependent parameters and that can be applied to
fuse any number of similarity measures. The results of our experi-
ments show that substantial accuracy increases may be obtained
compared to stereo matching algorithms based on individual simi-
larity performances or on non-adaptive fusion strategies.
Specifically, the results show that stereo confidences can be used
as the basis for computing adaptive per-pixel weights for stereo
similarity metric fusion. Additionally, we showed that exploiting
spatial correlation in a local region by means of a consensus neigh-
borhood may increase the fusion accuracy. Our approach is also
effective in challenging stereo problems such as cross-modal
stereo matching, where individual stereo similarity measures gen-
erally fail to find sufficient good matches.
Appendix A. Stereo similarity measures

The first step of the stereo matching algorithms is measuring
matching costs of pixels using a similarity measure. We imple-
mented eleven different similarity measures based on [20]. The
values parameters for each of the similarity measures are set
according to their implementations in the literature. Fig. 11 repre-
sents the disparity estimations from initial matching for different
similarity measures on Tsukuba dataset.

In this section, we describe the similarity (Appendix A) and con-
fidence measures (Appendix B) that will be used in our
experiments.
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AD measures the absolute intensity difference between the ref-
erence (left) image Iðx; yÞ and the target (right) image I0ðx� d; yÞ:

CADðx; y; dÞ ¼ jIðx; yÞ � I0ðx� d; yÞj: ð:1Þ

RGB measures the absolute difference of all color channels R;G;B
and aggregates them to have the final matching score:

CRGBðx; y; dÞ ¼
X

i¼R;G;B

jIiðx; yÞ � I0iðx� d; yÞj: ð:2Þ

Mean is similar to AD but the images are filtered with a mean filter
of size N before the matching:

IMeanðx; yÞ ¼ Iðx; yÞ � 1
jNj

XN=2

i¼�N=2

Iðx� i; y� iÞ;

CMeanðx; y;dÞ ¼ jIMeanðx; yÞ � I0Meanðx� d; yÞj: ð:3Þ

BT is the Birchfield–Tomasi similarity measure [29] which is a sam-
pling-intensive absolute difference measure. Unavoidable image
sampling may introduce errors in stereo matching since the correct
match may not be shifted in discrete disparity intervals. BT sup-
presses such errors by using interpolation of neighbouring pixels:

I�ðx; yÞ ¼ ðIðx� 1; yÞ þ Iðx; yÞÞ=2;

Iþðx; yÞ ¼ ðIðxþ 1; yÞ þ Iðx; yÞÞ=2;

Iminðx; yÞ ¼ minðI�ðx; yÞ; Iðx; yÞ; Iþðx; yÞÞ;
Imaxðx; yÞ ¼ maxðI�ðx; yÞ; Iðx; yÞ; Iþðx; yÞÞ;
Aðx; y; dÞ ¼maxð0; Iðx; yÞ � I0maxðx� d; yÞ; I0minðx� d; yÞ � Iðx; yÞÞ;
Bðx; y;dÞ ¼maxð0; I0ðx� d; yÞ � Imaxðx; yÞ; Iminðx; yÞ � I0ðx� d; yÞÞ;
CBTðx; y; dÞ ¼ minðAðx; y;dÞ;Bðx; y;dÞÞ: ð:4Þ

Rank [23] transform is a non-parametric image transform that
models the structure of the neighbourhood of pixels by exploiting
the intensity variation. Eq. (.5) represents the rank transform
RTðx; yÞ of a pixel ðx; yÞ inside a local neighbourhood Nðx; yÞ of size
7� 7 and initial DSI, CRTðx; y; dÞ as:

RTðx; yÞ ¼ ðx0; y0Þ 2 Nðx; yÞjIðx0; y0Þ < Iðx; yÞj j;
CRTðx; y; dÞ ¼ jRTðx; yÞ � RT 0ðx� d; yÞj: ð:5Þ

Census [23] transform models the structure of 7� 7 neighbourhood
of pixels that is denoted by k, as represented in Eq. (.6). Census is
one of the most robust similarity measure against radiometric dif-
ferences between stereo pairs [20] and it is calculated as:

CTðx; yÞ½k� ¼
1; iff Iðxk; ykÞ > Iðx; yÞ
0; otherwise;

�

lcðx; y;dÞ½k� ¼
1; iff CTðx; yÞ½k� ¼ CT 0ðx� d; yÞ½k�
0; otherwise;

(

CCTðx; y; dÞ ¼
X
8k

lcðx; y; dÞ½k�: ð:6Þ

The initial DSI of Census transformed images calculated by using
Hamming distance [23].

NCC is an intensity and patch based matching method that is
especially robust against Gaussian noise between the matched
patches. For simplified notation, let Ip and Ip�d denote the pixels
at ðx; yÞ and x� d; y respectively. Eq. (.7) presents the initial DSI cal-
culation using NCC:

CNCCðp; dÞ ¼
P

p02Np
Ip0 I
0
p0�dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p02Np
I2
p0
P

p02Np
I02p0�d

q : ð:7Þ

ZNCC is similar to NCC whereas it provides more robustness against
gain and offset variation between matched image patches [30]:
CZNCCðp;dÞ ¼
P

p02Np
ðIp0 � IpÞðI0p0�d � �I0pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p02Np
Ip0 � Ip
� �2P

p02Np
I0p0�d � �I0p
� �2

r : ð:8Þ

For calculating NCC and ZNCC, we choose a patch size, Np

�� �� of 5� 5.
Sobel can suppress the noise in the intensity images. Let Isðx; yÞ

denote sobel filter of size 3� 3 response of image I at pixel ðx; yÞ:

CSBðx; y; dÞ ¼ Isðx; yÞ � I0sðx� d; yÞ
�� ��: ð:9Þ

LoG can suppress the noise and provide robustness against offset in
intensities. Similar to [20], we incorporated LoG kernel with size
5� 5 and standard deviation of 1:

Lðx; yÞ ¼ �1
pr4 1� x2 þ y2

2r2

	 

e�

x2þy2

2r2 ;

ILoGðx; yÞ ¼ Iðx; yÞ � Lðx; yÞ;
CLoGðx; y;dÞ ¼ jILoGðx; yÞ � I0LoGðx� d; yÞj: ð:10Þ

Mutual Information (MI). If we assume the intensity values of pix-
els as random variables (RV), X, that has probability density func-
tion P, we can find the correlation between the two distributions
in stereo images. Eq. (.11) depicts the entropy, HðXÞ, of the distribu-
tion of X. MI is used to find how similar the two distributions are
between two image patches in stereo images and calculated as
depicted in Eq. (.12).

HðXÞ ¼ �
X

x

PXðxÞðlogðPXðxÞÞÞ; ð:11Þ

MIðX;YÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ; ð:12Þ
CMIðx; y; dÞ ¼ �MIðX;YÞ; ð:13Þ

where HðX;YÞ is the joint entropy of the two distributions, X and Y.
In Eq. (.13), we negate the mutual information in order to obtain a
cost measure rather than a correlation. Therefore, as the mutual
information decrease, better stereo correspondences are obtained.

AD, RGB, Mean, BT, Rank, Census, Sobel and LoG are calculated
pixel-wise, however NCC, ZNCC and MI are calculated over a neigh-
bourhood. In order to compensate this difference, the pixel-wise
costs are aggregated over 3� 3 windows. All of the costs are nor-
malized to have values in ½0;1� before confidence estimation and
fusion in order to prevent range difference in between.

Appendix B. Stereo Confidence Measures

To filter the wrong matches in stereo matching, it is important
to measure the confidence of matching at each pixel. The confi-
dence of a match can be measured using the DSI. Hu and Mordohai
[15] provided a survey of stereo confidences by incorporating 18
different stereo confidences. Pfeiffer et al. [28] picked four best
performing confidence measures based on [15] in their experi-
ments. In our work, we also choose four best performing confi-
dence measures based on [15,28] and incorporate them in our
fusion algorithm. Fig. 12 shows the four confidence estimation
results for the initial matching on Tsukuba dataset (see Fig. 13).

Left–Right Difference (LRD) is one of the top performing con-
fidence measures because of its cross control over the left and right
matching scores. Let d1; c1, and c2 be the winner disparity, mini-
mum, and second minimum costs respectively, LRD confidence,
SLRDðx; yÞ, can be calculated as:

SLRDðx; yÞ ¼
c2 � c1

c1 �min
d0
ðc0ðx� d1; y;d

0ÞÞ
����

����þ �
; ð:14Þ

where c0ðx� d1; y;d
0Þ denotes target to reference cost and d0 repre-

sents the disparities from target to reference. As the difference
between c1 and min

d0
ðc0ðx� d1; y;d

0ÞÞ decrease, the confidence
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increases. We would expect that they would be equal if there is no
error and no occlusion between the two images. Therefore, we add a
small positive value � to the denominator to ensure we do not
obtain a zero denominator.

Naive Peak Ratio (PKRN) is one of the simple yet effective
stereo confidence measure that uses only the reference matching
scores. SPKRN is defined as:

SPKRN ¼
c2

c1 þ �
: ð:15Þ

SPKRN observes the ratio of the minimum and second minimum
costs. As long as this ratio is high, the best match is unique com-
pared to other possible matches and vice versa.

Maximum Likelihood Measure (MLM) assumes that the
matching cost values has a normal distribution so its pdf can be
calculated. SMLM can be calculated as:

SMLM ¼
e
� c1

2r2
MLM

P
de
� cðdÞ

2r2
MLM

; ð:16Þ

where cðdÞ describes the cost value for each disparity d. SMLM also
considers only the reference cost values.

Local Curve (LC) [31] is incorporated by Pfeiffer et al. [28] and
provided the best accuracy in their Stixel World experiments. LC
considers the difference of the costs of the candidate disparities
around the winner disparity with minimum cost. Let cþ and c�
be the costs of the adjacent disparities around d1; SLC is calculated
as:

SLC ¼
maxðcþ; c�Þ � c1

c
; ð:17Þ

where c is a parameter to separate the distribution nicely and
assigned to 480 in [28].
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