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Abstract In this paper, we investigate to what extent

modern computer vision and machine learning techniques

can assist social psychology research by automatically

recognizing facial expressions. To this end, we develop a

system that automatically recognizes the action units

defined in the facial action coding system (FACS). The

system uses a sophisticated deformable template, which is

known as the active appearance model, to model the

appearance of faces. The model is used to identify the

location of facial feature points, as well as to extract fea-

tures from the face that are indicative of the action unit

states. The detection of the presence of action units is

performed by a time series classification model, the linear-

chain conditional random field. We evaluate the perfor-

mance of our system in experiments on a large data set of

videos with posed and natural facial expressions. In the

experiments, we compare the action units detected by our

approach with annotations made by human FACS annota-

tors. Our results show that the agreement between the

system and human FACS annotators is higher than 90%

and underlines the potential of modern computer vision and

machine learning techniques to social psychology research.

We conclude with some suggestions on how systems like

ours can play an important role in research on social

signals.

Keywords Facial expressions � Facial action coding

system � Active appearance models � Conditional random

fields

Introduction

One of the main aims of social signal processing is

to address the social ignorance of today’s computers

(Vinciarelli et al. 2009). To address this social ignorance, it

is important that computers are capable of interpreting

social signals. These social signals may encompass verbal

communication, prompting the development of speech

recognition systems, but they typically also entail behav-

ioral cues. Ekman and Friesen (1969) distinguish five

main behavioral cues, viz. (1) affective/attitudinal/cogni-

tive states, (2) emblems, (3) manipulators, (4) illustrators,

and (5) regulators. Although this taxonomy is useful to

describe communicative intentions, it is not well suited as a

taxonomy that describes the technologies required to allow

computers to interpret these behavioral cues. Behavioral

cues are primarily contained in facial expressions (cues 1,

2, 3, 4, and 5), gestures (cues 2, 3, and 4), body pose

(cues 1, 2, 4, and 5), and interactions (cues 4 and 5). The

interpretation of these features requires different technol-

ogies: facial expression analysis, gesture recognition, pose

detection, and gaze detection, respectively. An overview on

which computer technologies are required to detect which

behavioral and social cues is presented by Vinciarelli et al.

(2009).

In this study, we focus on one of the most important

technologies required to interpret behavioral cues, viz.
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facial expression analysis. In particular, we develop a

system that automatically annotates faces depicted in vid-

eos according to the facial action coding system [FACS;

Ekman and Friesen (1978)]. FACS allows for the system-

atic description of facial expressions by categorizing facial

expressions by describing them in terms of 46 action units

(AUs) that correspond to the facial muscles. Action units

can be given intensity scores: the most simple score is

present or not present. Two alternative intensity scores are

(1) neutral, onset, apex, and offset or (2) trace, slight,

pronounced, extreme, and maximum. In our experiments,

we use the simple present/non-present scoring; however,

win provided with appropriate data, our system can be used

with other scorings as well.

Action units can be used to recognize facial expressions

and/or behavioral cues (Giudice and Colle 2007; Lucey

et al. 2010). For instance, anger typically involves action

unit 23 or 24, disgust involves action unit 9 or 10, and

happiness involves action unit 12 (see Table 2 for an

overview of action units). An action unit recognition sys-

tem like one we develop in this paper can thus be used as a

basis for recognizing higher-level facial expressions and/or

behavioral cues.

Our system for action unit recognition combines com-

puter vision techniques that extract informative features

from the depicted faces with a machine learning model for

the classification of time series (as facial expressions in a

video change over time). The computer vision techniques

extract features from the face images that are indicative of

the presence of action units in the face using a deformable

template model, called the active appearance model

[AAM; Cootes et al. (1998)]. The machine learning model,

known as linear-chain conditional random field [CRF;

Lafferty et al. (2001)], recognizes action units in each

image in the sequence of face images. The key property of

the linear-chain CRF is that it not only employs the face

features measured in the current image to recognize action

units, but that it also employs knowledge on the likelihood

of an action unit changing from one intensity score to

another (for instance, it can make use of the fact that an

action unit does not typically change from neutral into

offset). We investigate the performance of our action unit

recognition system on a large data set of videos in which

subjects are recorded while making posed and natural

facial expressions. The videos in the data set were anno-

tated by human FACS-certified annotators, facilitating the

training and evaluation of our system.

The main aim of the paper is to illustrate what today’s

most sophisticated computer vision and machine learning

techniques are capable of and to provide some ideas on

how these techniques may be used to facilitate social

psychology research. We do not explicitly compare the

performance of our system with that of other systems

presented in the literature; we merely use our system to

illustrate the potential of computer vision and machine

learning to facial expression analysis. The results of our

experiments reveal that it is likely that our system would

pass certification tests for human FACS labelers.

The outline of the remainder of this paper is as follows.

In ‘‘Related work’’, we give an overview of related work on

automatic action unit recognition. ‘‘Active appearance

models’’ provides an overview of the construction, and

fitting of the active appearance model, we use as a basis for

our system. In ‘‘Feature extraction’’, we introduce three

types of features that are extracted from the face images

and that are indicative of action unit presence in the

depicted face. Subsequently, ‘‘Conditional random fields’’

describes the conditional random field model we use to

assign FACS labels to each frame in a face image sequence

(based on the extracted features). In ‘‘Experiments’’, we

describe the setup and results of experiments in which we

evaluate our approach on a large data set of facial

expression movies that were annotated by human FACS

annotators. The potential impact and applications of our

system to social psychology are discussed in ‘‘Discussion’’.

‘‘Concluding remarks’’ presents our conclusions, as well as

directions for future work.

Related work

In the computer vision field, there is a large body of work

on face analysis. Traditionally, much of this work has

focused on face detection [i.e., determining where in an

image a face is located; Viola and Jones (2001)], face

recognition [i.e., determining who is depicted in a face

image; Phillips et al. (2005)], and emotion recognition [i.e.,

recognizing the six basic emotions anger, fear, disgust, joy,

sadness, and surprise; Fasel and Luettin (2003)] Although

the automatic recognition of action units to face images has

not nearly received as much attention, there are still quite a

few studies that investigate automatic action unit recogni-

tion; see Table 1. Similar to the system we present in this

paper, most systems presented in earlier work consist of

two main components: (1) a component that extracts fea-

tures from the face images that are indicative of the pres-

ence of action units and (2) a component that learns to

recognize action units based on these input features, i.e., a

classifier. An overview of how other systems for action unit

recognition implement these two components is given in

Table 1.

From the overview presented in the table, we observe

that (1) features obtained from Gabor filters and (2) the

locations of facial feature points are the most popular

features. Gabor filters are local, high-frequency, oriented

filters that resemble the filters implemented in the primate
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primal visual cortex V1 (Daugman 1985; Jones and Palmer

1987). Because a Gabor filter basis is highly overcomplete,

a subset of filters has to be selected to obtain a feature

representation with a manageable dimensionality. This

subset of Gabor filters is typically selected by means of a

technique called boosting (Freund and Schapire 1995). In

our system, we do not use Gabor features (or boosting), but

like many other studies listed in Table 1, we opt to use the

location of tracked facial feature points as features for the

action unit recognition. Such facial feature points contain

information on the location of important parts of the face

(eye corners, nostrils, mouth corners, etc.); the pixel values

around the feature points contain information on the

appearance of these face parts. Similar to Lucey et al.

(2007), we use active appearance models to track facial

feature points, but we extend their approach by extracting

more sophisticated appearance features around the facial

feature points identified by the tracker.

As for the classifiers that are used to perform predictions

based on the extracted features, we observe that support

vector machines (SVMs) are the most popular classifiers.

Like the perceptron, SVMs separate the two classes (i.e.,

action unit present or not present) by a (hyper)plane, but

they are less prone to overfitting than the perceptron

(Vapnik 1995). Using the so-called ‘‘kernel trick’’ (Shawe-

Taylor and Christianini 2004), SVMs can also be used to

learn non-linear classifiers. A major shortcoming of stan-

dard SVMs, and of many of the other classifiers used in the

previous work, is that they fail to incorporate the temporal

structure of facial expressions. For instance, if we observe

the intensity onset for a particular action unit in the current

frame, we can be fairly confident that in a few frames this

action unit reaches the state apex, even if the visual evi-

dence for this state is limited (e.g., because part of the face

is occluded). Previously proposed approaches fail to

incorporate such knowledge. In our system, we do incor-

porate temporal information using linear-chain conditional

random fields1 (see ‘‘Conditional random fields’’)

Table 1 Overview of the two main components of systems for action unit recognition

Study Features Classifier

Lien et al. (1998) Dense-flow tracking Hidden Markov model

Cohn et al. (1999) Tracked feature points Quadratic discriminant classifier

Fasel and Luettin (2000) Eigenfaces Nearest neighbor classifier

Bartlett et al. (2005, 2006) Gabor filters Boosting ? support vector machine

Chang et al. (2006) Manifold learning Bayesian

Whitehill and Omlin (2006) Haar features Boosting

Littlewort et al. (2006) Gabor filters Boosting ? support vector machine

Lucey et al. (2007) Active appearance model Support vector machine

Valstar et al. (2004) Motion history images Nearest neighbor classifier

Pantic and Rothkrantz (2004) Tracked feature points Rule base

Pantic and Patras (2005) Tracked feature points Rule base

Valstar and Pantic (2006, 2007) Tracked feature points Boosting ? support vector machine

Tong et al. (2007, 2010) Gabor filters Boosting ? dynamic bayesian network

Susskind et al. (2008) Normalized pixels Deep belief network

Koelstra et al. (2010) Free-form deformations Boosting ? hidden Markov model

Table 2 Overview of the action units considered in our study

AU Name Incidence

1 Inner Brow Raiser 0.292

2 Outer Brow Raiser 0.196

4 Brow Lowerer 0.322

5 Upper Lip Raiser 0.172

6 Cheek Raiser 0.206

7 Lip Tightener 0.201

9 Nose Wrinkler 0.125

11 Nasolabial Deepener 0.056

12 Lip Corner Puller 0.187

15 Lip Corner Depressor 0.150

17 Lower Lip Depressor 0.041

20 Lip Stretcher 0.130

23 Lip Tightener 0.100

24 Lip Pressor 0.096

25 Lips Part 0.484

26 Jaw Drop 0.164

27 Mouth Stretch 0.137

The columns on the right show the incidence of the action units in the

Cohn–Kanade data set

1 As an alternative, we could have incorporated temporal information

using structured SVMs (Tsochantaridis et al. 2005).
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Active appearance models

Active appearance models simultaneously describe the

shape and texture variation of faces (Cootes et al. 1998;

Matthews and Baker 2004). Herein, shape refers to the

relative positions of feature points (such as eye corners,

mouth corners, nose tip, etc.) in the face, whereas texture

refers to the shape-normalized visual appearance of the

face (for instance, eye color, skin color, malls, etc.). Active

appearance models thus consist of two submodels: (1) a

shape model that models the location of facial feature

points and (2) a texture model that models the shape-

normalized facial texture. We discuss the two models

separately below in ‘‘Shape model’’ and ‘‘Texture model’’.

‘‘Combining the models’’ describes how the shape and the

texture models are combined to construct the active

appearance model. In ‘‘Fitting’’, we discuss how the active

appearance model is fitted to a new face image.

Shape model

To train the shape model of an active appearance model, a

data set of face images is required in which facial feature

points—for instance, mouth corners, eye corners, and

nose tip—are manually annotated. The feature points are

required to be relatively dense, in such a way that a tri-

angulation constructed on the feature points approximately

captures the geometry of the face, i.e., in such a way

that the imaginary triangles between the feature points

correspond to roughly planar surfaces of the face. Three

examples of annotated faces are shown in Fig. 1. The

manual annotation of a collection of face images is

time-consuming, but it only needs to be done once for a

fixed collection of faces. If later on, we encounter a new

face image, we can automatically determine the facial

feature point locations by fitting the active appearance

model on the new face image using the procedure descri-

bed in ‘‘Fitting’’.

To model the variation in facial feature point locations

(due to differences in the shape of faces), we perform

Principal Components Analysis (PCA) on normalized2

facial feature point coordinates. PCA learns a model of the

data that identifies (1) which facial feature points have the

largest location variation and (2) how the variations in

the locations of the facial feature points are correlated. In

particular, PCA learns: (1) a base shape m that is formed by

the mean of the normalized feature point coordinates

averaged over the entire data set and (2) a linear basis S

that contains the directions in which the facial feature

points vary most. Together, the base shape m and the linear

basis S allow us to model each plausible facial feature point

configuration well (in the squared error sense) using a

small number of shape parameters p. Given the vector of

shape parameters p, the facial feature point configuration

can be computed as pTSþ m. The shape parameters p thus

form a compact representation for the deviation of the face

shape from the base shape.

An example of a shape model with four shape compo-

nents is shown in Fig. 2. In the figure, red crosses indicate

the location of the facial feature points in the base shape m,

and blue arrows indicate the direction and magnitude of the

(a) Example face 1. (b) Example face 2. (c) Example face 3.

Fig. 1 Three examples of faces

with manually annotated facial

feature points shown as red
crosses

Fig. 2 A shape model with four components. The red wire frame indicates the base shape. The blue arrows indicate the movement directions of

the feature points (each component corresponds to one column of S)

2 The normalization removes translations, rotations, and rescalings of

the face that are irrelevant for expression analysis.
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variation in locations of each of the feature points (longer

arrows represent a larger variance). For instance, the first

component of the shape model represents the location of

the mouth and jaw, the second component describes a

forward rotation of the face, and the third describes small

out-of-plane rotations, etc. (We note here that not all shape

components are necessarily easily interpretable.)

Texture model

To model the facial texture (i.e., the shape-normalized

appearance of faces), we use the feature point annotations

to construct a data set of face images in which all feature

points have exactly the same location. This is achieved by

warping3 each face image onto the base shape m using the

feature point annotations as control points. We can use the

resulting shape-normalized face images to construct a

texture model that describes features such as eye color,

skin color, lip color, malls, etc.

Like the shape model, the texture model is also con-

structed using PCA. To construct the texture model, PCA is

applied on the shape-normalized images. In other words, a

low-dimensional texture representation is constructed in

such a way, that as much of the pixel variance as possible is

preserved. The texture model contains (1) a mean texture

image l that is computed by averaging all shape-normal-

ized face images and (2) a linear basis A that captures the

main deviations from the mean texture image. The texture

model allows us to model each plausible facial texture with

low error (in the squared error sense) using only a small

number of texture parameters k. Given a texture parameter

vector k, a facial texture image can be constructed by

evaluating kTAþ l.

An example of a texture model with four components is

depicted in Fig. 3. In the figure, bright areas in the images

correspond to pixels in the (shape-normalized) facial tex-

ture data set with high variance. For instance, the second

component models the closing of the eyes (blinking),

whereas the fourth component models the opening of the

mouth. The third and fourth components are also used to

model the presence of glasses. (The first texture component

models variations in the overall brightness of the face

images.)

Combining the models

To model the appearance of a face, the active appearance

model combines the shape and texture models. The com-

bination is performed by warping the texture image gen-

erated by the texture model onto the face shape generated

by the shape model. Given the shape and texture parame-

ters, the corresponding face is thus generated using a three-

stage process. First, the shape model is used to generate a

face shape, i.e., to lay out the facial feature points. Second,

the texture model is used to generate a facial texture image.

Recall that this texture image is defined in the coordinate

frame of the base shape m. Third, the texture image is

warped onto the face shape using the constructed feature

points as control points to construct the final face image.

This process is illustrated in Fig. 4.

Fitting

When presented with a new face image, fitting aims to find

a configuration of the shape parameters p and the texture

parameters k that minimizes the squared error between the

face image and the face generated by the active appearance

model. In the literature, several fitting algorithms have

been proposed, e.g., by Matthews and Baker (2004); Gross

et al. (2005); Papandreou and Maragos (2008). In our

study, we use a fitting algorithm based on the project-out

inverse compositional algorithm (Matthews and Baker

2004). This fitting algorithm performs the squared error

minimization with respect to the shape parameters first; the

shape parameters are set in such a way that the squared

error between the shape-transformed mean texture and the

observed face is minimized. Given the shape parameters,

the corresponding texture parameters can be computed by

solving a linear least-squares problem. The mathematical

details of the project-out inverse compositional algorithm

fall outside the scope of this paper but are described in

detail by Matthews and Baker (2004). Our fitting procedure

Fig. 3 A texture model with four components. The leftmost image represents the mean texture. The other images indicate deviations from the

mean texture (each component corresponds to a single column of A)

3 In our implementation, we use a so-called piecewise linear warp.
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is initialized using a standard face detector (Viola and

Jones 2001).

Feature extraction

Active appearance models identify facial feature points,

and they provide a low-dimensional approximation of the

facial texture, but they do not produce features that are

indicative of the presence of action units in the face, i.e.,

they do not provide direct information about characteristics

of the face that are of relevance to its facial expression. We

investigate three types of features, all of which use the

feature points identified by the active appearance models.

The three features are discussed separately in the next three

subsections.

Normalized shape variations

Changes in the location of facial feature points identified

by the active appearance model are indicative of the

presence of certain action units. For instance, large varia-

tions in the locations of feature points around the mouth

may indicate the presence of action unit 27 (mouth stretch).

Hence, we can use the differences between the locations of

the feature points in the current frame and the location of

the feature point in the first frame of each movie as features

for action unit recognition. These differences are computed

using a two-stage process. First, we normalize all frames in

a movie with respect to the base shape to remove rigid

transformations such as translations, rotations, and resca-

lings. Second, we subtract the resulting normalized shape

coordinates of the first frame4 from the resulting normal-

ized shape coordinates of the other frames to measure the

changes in feature point locations. This process produces

features that we refer to as normalized shape variation

(NSV) features.

Shape-normalized texture variations

Normalized shape variation features do not possess infor-

mation on the facial texture, such as the presence of

wrinkles in the face. As a result, it may be hard to predict

the presence of, e.g., action unit 24 (lip pressor), based on

Fig. 4 Generating a face from an active appearance model. The face

shape is constructed by adding a linear combination of the shape

components S to the base shape m. The facial texture is constructed by

adding a linear combination of the texture components A to the mean

texture l. The final face image is formed by warping the resulting

facial texture onto the face shape

4 As an alternative, one could subtract the coordinates from the

previous frame instead. This would presumably work better in online

settings, or on very long videos.
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normalized shape variations. By contrast, the lip pressor is

clearly visible in the texture of the face (as it makes most of

the lip texture disappear). Using the feature point locations

identified by the active appearance model allows us to

extract shape-normalized texture features that capture such

texture information. The features are extracted by warping

the face image onto the base shape m; using the feature

point locations as control points. This leads to texture

images in which all feature points are in exactly the same

location. Three examples of such shape-normalized tex-

tures are shown in Fig. 5. Due to the shape normalization,

the differences between the texture images provide insight

into the presence of wrinkles and other textural features

(Ashraf et al. 2007). Similar to the normalized shape

variations, we compute shape-normalized texture variation

(SNTV) features by subtracting the shape-normalized tex-

tures from the the shape-normalized texture in the first

frame.

Scale-invariant feature transform

Pixel-based image representations such as shape-normal-

ized texture variations are well known to have limitations

for recognition tasks, because they are highly variable

under, among others, changes in lighting (as illustrated by

the first texture component in Fig. 3). To address this

problem, image representations based on image gradients

are often more successful (Lowe 2004; Ke and Sukthankar

2004; Dalal and Triggs 2005; Bay et al. 2008). A second

problem of shape-normalized appearance features is that

they may contain a lot of variables (i.e., regions in the

face image) that are hardly indicative of the presence of

action units, because their texture does not vary much

under different expressions. Hence, local gradient-based

image features may be more appropriate for action unit

detection.

Scale-invariant feature transform (SIFT) features are

local gradient-based image features introduced by Lowe

(2004) that address both of these problems. SIFT features

have been successfully used in a wide range of computer

vision tasks [e.g., Sivic and Zisserman (2003); Brown and

Lowe (2003); Quattoni et al. (2010)]. They construct a

histogram of the magnitude and orientation of the image

gradient in a small image patch around a facial feature

point. The histogram consists of 16 orientation subhisto-

grams, each of which has 8 bins, leading to a 128-dimen-

sional feature (per feature point). The construction of the

SIFT feature consists of three main steps: (1) the gradient

magnitude and orientation at each pixel in the image patch

are computed, (2) the gradient magnitudes are weighted

using a Gaussian window that is centered onto the image

patch, and (3) the weighted gradient magnitudes are

accumulated into orientation histograms measured over

subregions of size 4 9 4 pixels.

We compute SIFT features around all facial feature

points around the eyebrows, eyes, nose, and mouth and

concatenate the resulting feature vectors to construct a

facial texture representation that contains information on

the texture around these facial feature points.

Conditional random fields

Linear-chain conditional random fields are discriminative

probabilistic models that are used for labeling sequential

data (LeCun et al. 1998; Lafferty et al. 2001). Conditional

random fields may be best understood by starting from the

framework of linear logistic regression. A linear logistic

regressor is a generalized linear model (GLM) for multi-

nomial regression. It models the probability of a variable y

having one of K states given the data x using a logistic (or

soft-max) function

pðy ¼ ijxÞ ¼ expðwT
i xÞ

PK
k¼1 expðwT

k xÞ
: ð1Þ

In the context of this paper, the event y may correspond

to a certain action unit having one of K = 2 states: present

or non-present. When more detailed intensity scores are

available for the action units, the number of possible states

increases. The data x corresponds to the features extracted

from a face image. The regression weights wi are learned

based on N labeled training data points fðy1; x1Þ; ðy2; x2Þ;
. . .ðyN ; xNÞg, i.e., based on pairs of images and their action

unit labels. The learning is performed using a technique

called maximum conditional likelihood, which maximizes

the function L ¼
PN

n¼1 log pðynjxnÞ. The function L has a

(a) Example face 1. (b) Example face 2. (c) Example face 3.

Fig. 5 Three examples of

shape-normalized facial

textures. Note how the facial

feature points (eye corners,

mouth corners, nose tip, etc.)

are in exactly the same location

in the images
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single global maximum, which makes learning the

regression weights relatively straightforward.

In our setting, we do not recognize action units in a

collection of independent images, but in a collections of

consecutive frames of a movie. Consecutive frames in a

movie have strong dependencies, as the differences between

two consecutive frames are typically small. Moreover, we

often have prior knowledge on how action units are likely to

behave; for instance, we could exploit our knowledge that is

unlikely that an apex is followed by an onset (if we were

recognizing these intensity scores). Hence, recognizing

action units in each frame independently using a linear

logistic regressor, without taking into account the temporal

structure of facial expressions, would be very naive. It is

exactly this naivety that conditional random fields aim to

resolve.

Conditional random fields incorporate a temporal model

between the label yt at time step t and the label yt?1 at time

step t ? 1. In particular, they learn a set of transition log

probabilities fv1; v2; . . .; vKg that measure how likely it is

that – in the next time step – one moves from one state to

another. The log probability of moving from state yt to state

yt?1 is given by vy_t, y_t?1. The conditional random field

thus has two sets of parameters: transition log probabilities

v and regression weights w. Together, these parameters

determine the probability of a label sequence y1; y2; . . .; yT

given a data sequence x1; x2; . . .; xT . Like in logistic

regression, the training is performed by maximizing

the conditional log likelihood, which is now given by L ¼
PN

n¼1 log pðyn1; yn2; . . .; ynT jxn1; xn2; . . .; xnTÞ with respect

to the transition log probabilities and the regression

weights. In other words, conditional random fields aim to

maximize the likelihood of a label sequence. The function

L still has a single global maximum, which makes training

relatively straightforward. In our experiments, we used a

stochastic gradient descent algorithm (Robbins and Monro

1951; Bottou 2004) to learn the parameters of the condi-

tional random fields.

The prediction of frame labels on an unseen test

sequence using conditional random fields is straightfor-

ward; it amounts to evaluating the posterior distribution

over the label sequence pðy1; y2; . . .; yT jx1; x2; . . .; xTÞ
(which is exactly the distribution that is modeled by the

conditional random field). Evaluating this distribution can

be performed efficiently (Viterbi 1967), and it gives a value

for each frame that indicates the probability that an action

unit is present in that particular frame. Subsequently, we

can apply a threshold on these probabilities to construct the

final annotation; for instance, we can choose5 to label an

action unit as present in a frame if its probability of being

present is larger than 0.5.

Experiments

This section describes our experiments with the action unit

recognition system described above. The data set we used

as the basis for our experiments is described in ‘‘Data set’’.

We discuss the setup of the experiments in ‘‘Experimental

setup’’ and the results of our experiments in ‘‘Results’’.

Data set

In our automatic action unit recognition experiments, we

performed experiments on version 2 of the Cohn–Kanade

data set6 [also referred to as the CK? data set; Lucey et al.

(2010)]. The data set contains 593 short movies of 123

subjects producing posed expressions. Together, the mov-

ies contain 10,734 frames (i.e., images); the average length

of a movie is 18.1 frames. All movies were annotated for

the presence and non-presence of action units by two

human FACS labelers. In our experiments, we only con-

sidered action units that are present relatively often. The

action units we focused on are listed in Table 2.

The face images range in size between 640 9 490 and

720 9 480 pixels; the size of the face area in the images

ranges between 250 9 250 and 300 9 300 pixels. A small

number of movies is in full color, but the majority of the

movies are in grayscale. For convenience, we converted all

movies to grayscale in our experiments.

Experimental setup

For the shape model of the active appearance model, we

determine the number of shape components by preserving

90% of the variance in the facial feature point locations.

The number of texture components in the texture model is

also determined by preserving 90% of the variance in the

shape-normalized appearance (i.e., texture) of the faces.

The conditional random fields are trained on the features

that are extracted from the faces.

The evaluation of the performance of our system is

performed using an approach called leave-one-subject-out

cross-validation. This means that we perform a separate

experiment for each of the 123 subjects: We leave out all

movies containing that subject from the data and train the

conditional random fields on the remaining data. Subse-

quently, we evaluate the performance of the conditional

random fields on the movies that contain the held-out

5 In our experimental evaluation, we try many thresholds and average

the performance over all these thresholds (see 2 for details).

6 The Cohn–Kanade data set is publicly available from http://www.

vasc.ri.cmu.edu/idb/html/face/facial_expressio.
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subject. This allows us to investigate how well our system

works on new, unseen human subjects. The performance of

the conditional random fields is averaged over all 123 runs.

We measure the performance of our automatic FACS

annotation system by measuring the area under the receiver

operating characteristic (ROC) curve. The ROC curve plots

the rate of false positives against the true positive rate for

various thresholds. The area under the ROC curve (AUC)

summarizes the quality of the annotator in a single value: It

measures the probability that the classifier assigns a higher

score to a randomly selected positive example than to a

randomly selected negative example (Bradley 1997). For a

completely random annotator, this probability (i.e., the

AUC) is 0.5, whereas the AUC is 1 for a perfect annotator.

To give an indication of the uncertainty in the AUC values,

we also present an upper bound on this uncertainty pro-

posed by Cortes and Mohri (2005). In particular, the

uncertainty measure is given by u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AUCð1�AUCÞ
p

maxðNp;NnÞ , where

Np represents the number of positive examples and Nn

represents the number of negative examples.

Results

In Table 3, we present the results of training and testing

conditional random fields on the three types of features

presented in ‘‘Feature extraction’’. We also present results

obtained using a feature representation that was obtained

by performing PCA on the combination of three features.

The results are average AUC values obtained using leave-

one-subject-out cross-validation and upper bounds on the

AUC uncertainties.

From the results presented in the table, we observe that

the performance of our system is strong; the best feature set

has an average AUC of 0.901, with AUCs for individual

action units ranging between 0.867 (on action unit 4; brow

lowerer) and 0.946 (on action unit 27; mouth stretch). In

order to give a reference frame for the quality of these

results, a true positive rate of 0.70 is sufficient to pass

FACS certification tests (Ekman and Rosenberg 2005). It

thus seems likely that our system would pass such tests.

From the results, we also observe that appearance-based

features typically outperform feature point locations; the

normalized shape features only outperform appearance-based

features on action units that lead to large feature point vari-

ations, such as the inner and outer brow raisers. Furthermore,

we observe our combined features perform disappointingly;

presumably, a better approach to combine the features is to

train classifiers on each of the features and to linearly combine

the predictions of these classifiers (Bell and Koren 2007).

Discussion

Although the results presented in ‘‘Experiments’’ are

promising, some important issues remain. An important

Table 3 Averaged areas under the curve (AUCs) obtained by training conditional random fields on the feature sets

AU Name NSV SNTV SIFT Combined

1 Inner Brow Raiser 0.8947 ± 0.0232 0.8834 ± 0.0243 0.8170 ± 0.0292 0.8545 ± 0.0267

2 Outer Brow Raiser 0.9278 ± 0.0239 0.9270 ± 0.0240 0.8642 ± 0.0317 0.8630 ± 0.0318

4 Brow Lowerer 0.8277 ± 0.0271 0.8667 ± 0.0244 0.8078 ± 0.0283 0.8581 ± 0.0251

5 Upper Lip Raiser 0.8857 ± 0.0315 0.9070 ± 0.0288 0.8723 ± 0.0330 0.8326 ± 0.0370

6 Cheek Raiser 0.8740 ± 0.0299 0.8691 ± 0.0304 0.8756 ± 0.0298 0.8685 ± 0.0305

7 Lip Tightener 0.8484 ± 0.0326 0.8633 ± 0.0312 0.8277 ± 0.0343 0.8131 ± 0.0354

9 Nose Wrinkler 0.9415 ± 0.0271 0.9401 ± 0.0274 0.8960 ± 0.0352 0.8782 ± 0.0378

11 Nasolabial Deep. 0.8818 ± 0.0554 0.9270 ± 0.0446 0.8766 ± 0.0564 0.8799 ± 0.0558

12 Lip Corner Puller 0.9171 ± 0.0241 0.9222 ± 0.0234 0.8813 ± 0.0283 0.9066 ± 0.0254

15 Lip Corner Depr. 0.9178 ± 0.0282 0.9239 ± 0.0272 0.8939 ± 0.0316 0.8700 ± 0.0345

17 Lower Lip Depr. 0.9017 ± 0.0209 0.9125 ± 0.0198 0.8397 ± 0.0257 0.8669 ± 0.0238

20 Lip Stretcher 0.8713 ± 0.0377 0.8918 ± 0.0349 0.7810 ± 0.0465 0.8430 ± 0.0409

23 Lip Tightener 0.9399 ± 0.0307 0.9412 ± 0.0304 0.9128 ± 0.0364 0.8864 ± 0.0410

24 Lip Pressor 0.9275 ± 0.0341 0.9408 ± 0.0310 0.9179 ± 0.0361 0.8895 ± 0.0412

25 Lips Part 0.9075 ± 0.0177 0.8961 ± 0.0186 0.8816 ± 0.0197 0.9132 ± 0.0172

26 Jaw Drop 0.8847 ± 0.0452 0.8876 ± 0.0447 0.8771 ± 0.0464 0.8176 ± 0.0546

27 Mouth Stretch 0.9455 ± 0.0252 0.9459 ± 0.0251 0.9073 ± 0.0322 0.8958 ± 0.0340

ALL Averaged 0.8997 ± 0.0303 0.9086 ± 0.0288 0.8665 ± 0.0342 0.8669 ± 0.0349

All AUCs are computed using leave-one-subject-out cross-validation. An upper bound on the uncertainty of the AUCs is also presented. Best

performance for each action unit is boldfaced. See text for details
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issue of our action unit recognition system and of most

similar systems is that their performance is typically not

very robust under out-of-plane rotations or partial occlu-

sions of the face. We did not evaluate the performance of

our system in such situations, because up to the best of our

knowledge, there are no publicly available databases that

contain FACS-coded videos with out-of-plane rotations

and/or occlusions7. As a result of the lack of such data,

today’s systems are still trailing behind human observers;

in particular, because the human visual system is remark-

ably robust to variations such as rotations and occlusions.

Nonetheless, it is likely that our system would pass FACS

certification tests (these tests require a true positive rate of

at least 70%).

Another issue of the action unit recognition system we

described (and of other recently developed systems) is that

it heavily relies on the availability of facial expression

videos that are labeled by human FACS annotators. In

practice, the availability of such FACS-labeled data is

often limited because of the high costs that are associated

to manual FACS labeling. To address this issue, it may be

helpful to employ approaches for semi-supervised learning

(i.e., using unlabeled data to improve the action unit

detectors) and/or active learning (i.e., learning which

instances should be manually labeled).

The potential of systems such as the one presented in

this paper extends far beyond automatically recognizing

action units in data gathered by, e.g., social psychologists.

In particular, automatic action unit recognition may pro-

vide a good basis for the recognition of higher-level cog-

nitive states like interest and puzzlement (Cunningham

et al. 2004) or (dis)agreement (Bousmalis et al. 2009) and

for the recognition of psychological problems such as

suicidal depressions (Ekman and Rosenberg 2005), pain

(Williams 2003), or schizophrenia (Wang et al. 2008).

Other potential applications of our system include under-

standing social behaviors such as accord and rapport

(Ambady and Rosenthal 1992; Cunningham et al. 2004),

identifying social signals such as status or trustworthiness

(Ambady and Rosenthal 1992; Ekman and Friesen 1969;

Ekman et al. 2002), predicting the success of marriage

counseling (Gottman et al. 2001), and identifying person-

ality traits such as extraversion and temperament (Ekman

and Rosenberg 2005). An extensive overview of applica-

tions of automatic facial expression measurement is given

by Bartlett and Whitehill (2010). Applications of our sys-

tem may also exploit the generative capabilities of the

active appearance model. For instance, the model may be

used to investigate the effect of small changes in facial

appearance on human perception (Boker et al. 2007) or for

experiments with expression cloning (Theobald et al.

2007).

Concluding remarks

We developed a system for automatic action unit recog-

nition. Our system uses conditional random fields to predict

action unit states from features extracted using active

appearance models. The performance of our system is

promising, and it can be used in real time.

In future work, we aim to extend the conditional random

fields to exploit correlations between action units (Sutton

et al. 2007; Tong et al. 2010): For instance, if we detect the

presence of action unit AU12, the probability that AU13 or

AU14 is also present increases; our models should exploit

this information. In addition, we intend to employ semi-

supervised and active learning to obtain good performance

at low labeling costs.

We also intend to use our system to detect basic emo-

tions as well as higher-level social signals by learning

mappings from action unit labels to these emotions/signals.

In particular, we intend to use our system for the recog-

nition of agreement/disagreement (Bousmalis et al. 2009;

Poggi et al. 2010). We note that in a system that recognizes

agreement/disagreement, more features that only AU

presence should be taken into account; in particular, suc-

cessfully recognizing agreement/disagreement requires the

detection of nods and shakes (Kapoor and Picard 2001; Tan

and Rong 2003; Kang et al. 2006).
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