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Abstract. The recently introduced transductive confidence machines
(TCMs) framework allows to extend classifiers such that they satisfy the
calibration property. This means that the error rate can be set by the
user prior to classification. An analytical proof of the calibration property
was given for TCMs applied in the on-line learning setting. However, the
nature of this learning setting restricts the applicability of TCMs. In this
paper we provide strong empirical evidence that the calibration property
also holds in the off-line learning setting. Our results extend the range
of applications in which TCMs can be applied. We may conclude that
TCMs are appropriate in virtually any application domain.

1 Introduction

Machine-learning classifiers are common in many real-life applications. Many of
these applications are characterized by high error costs, indicating that incor-
rect classifications can have serious consequences. It is therefore desired to have
classifiers that output reliable classifications. One way to achieve this is to com-
plement each classification with a confidence value. Classifications with a low
confidence value are not reliable and should be handled with caution.

For some classifiers (such as the naive Bayes classifier) a measure of confidence
is readily available, but for many other classifiers this is not the case. The recently
introduced transductive confidence machines (TCMs) framework allows for an
efficient way to provide confidence values produced by virtually any classifier
[8,17]. The essential property of TCMs is that their error rate is controlled by
the user prior to classification. For example, if the user specifies an error rate of
0.05, then at most 5% of the classifications made by a TCM are incorrect. This
property is called the calibration property and has been proven to hold in the
on-line learning setting. However, this learning setting restricts the applicability
of TCMs. In the paper we investigate to what extent the calibration property
holds in the off-line learning setting. We investigate this by means of a systematic
empirical evaluation of TCMs using six different classifiers on various real-world
datasets.



The remainder of the paper is organized as follows. Section 2 defines the
learning setting that we consider. Section 3 explains TCMs and the calibration
property. It also provides implementations of six classifiers in the TCM frame-
work. Section 4 investigates to what extent the calibration property holds in the
off-line learning setting. Section 5 provides a final discussion on TCMs. Section
6 concludes that TCMs satisfy the calibration property in the off-line learning
setting.

2 Learning Setting

We consider the supervised machine-learning setting. The instance space is de-
noted by X and corresponding label space by ). An example is of the form
z = (z,y) with ¢ € X and y € Y. The symbol Z will be used as a compact
notation for X x ). Training data are considered as a sequence of examples:

S:(‘rluyl)w"a(xnayn):Zlu"'uzn ) (1)

where each example is generated by the same unknown probability distribution
P over Z. We assume that this distribution satisfies the exchangeability assump-
tion. This assumption states that the joint probability of a sequence of random
variables is invariant under any permutation of the indices of these variables. In
other words, the information that the z;’s provide is independent of the order in
which they are collected. Formally, we write:

P(z1,...,2n) :P(zﬂ.(l),...,zﬂ-(n)) , (2)

for all permutations 7 on the set {1...,n}.?

We apply a classifier in the off-line learning setting (batch setting): the clas-
sifier is learned on training data and subsequently used to classify instances
one-by-one. The true labels of instances are not returned. This is in contrast to
the on-line learning setting where the true label of each instance is provided after
prediction. The classifier is then retrained after each prediction since new infor-
mation is available. Clearly, the on-line learning setting restricts the applicability
of classifiers since any form of feedback can be very expensive.

3 Transductive Confidence Machines

Traditionally, classifiers assign a single label to an instance. In contrast, trans-
ductive confidence machines (TCMs) are allowed to assign a set of labels to each
instance. Such a prediction set contains multiple labels if there is uncertainty in
the true label of the instance [7,8,17]. Subsection 3.1 explains the construction
of prediction sets. Subsection 3.2 discusses the calibration property. Subsection
3.3 outlines six practical implementations of TCMs.

3 Note that exchangeable random variables are identically distributed and not nec-
essarily independent from each other. Therefore, identically and independently dis-
tributed (iid) random variables are also exchangeable. The exchangeability assump-
tion is thus weaker (i.e., more general) than the iid assumption.



3.1 Construction of Prediction Sets

To construct a prediction set for an unlabeled instance x,,+1, TCMs operate in
a transductive manner. Each possible label y € Y is tried as a label for instance
Zn+1- In each try we form the example 2,11 = (Zn41,y) and add it to S. Then
we measure how likely it is that the resulting sequence is generated by the
underlying distribution P. To this end, each example in the extended sequence:

(Ilayl)a R (znayn)v (:C’n.+17y) =21y R+l (3)

is assigned a nonconformity score by means of a nonconformity measure. This
measure defines how nonconforming an example is with respect to other available
examples. We require that it is irrelevant in which order the nonconformity scores
of the examples are calculated (due to the exchangeability assumption).

Definition 1. A nonconformity measure is a measurable mapping:
A: 2% x Z S RU{o0} (4)

with output indicating how nonconforming an example is with respect to all other
examples. The symbol Z(*) denotes the set of all bags of elements of Z. A bag is
denoted by 1 - §.

Definition 2. Given a sequence of examples z1, ..., zp+1 with n > 1, the non-
conformity score of example z; (i =1,...,n) is defined as:
i = A(l21, -5 2io15 Zit s - - o5 204105 2i) (5)

and the nonconformity score of example zn41 is defined as:

ant1=A(lz1, -y 200, 2Zny1) - (6)

Nonconformity scores can be scaled arbitrarily by multiplying with a fixed
non-zero number. Therefore, to know how nonconforming the created example
zZn+1 1s in the extended sequence, the nonconformity score a,,4+1 is compared to
all other a; (i =1,...,n).

Definition 3. Given a sequence of nonconformity scores ay,...,an+1 with n >
1, the p-value of label y assigned to unlabeled instance x, 41 is defined as:

C{i=1 n 41 > anga )|
B n+1 '

Dy (7)

If the p-value is close to its lower bound 1/(n + 1), then example z,41 is
very nonconforming. The closer the p-value is to its upper bound 1, the more
conforming example z,1 is. Hence, the p-value indicates how likely it is that
the tried label for an unlabeled instance is in fact the true label. A TCM outputs
the set of labels with p-values above a predefined significance level e.



Definition 4. A transductive confidence machine determined by some noncon-
formity measure is a function that maps each sequence of examples z1,...,zn
with n > 1, unlabeled instance x,11, and significance level € € [0,1] to the pre-
diction set:

I (z1,. . zn, Tng1) ={y €Y | py > €} . (8)

There may be situations in which many training examples have nonconfor-
mity score equal to the score of example z,1. The p-value is then large, but
caution is needed since many examples are equally nonconforming, making it im-
possible to discriminate between them. To alleviate this problem, a randomized
version of the p-value has been proposed [17, p. 27].

Definition 5. Given a sequence of nonconformity scores ai,...,any1 with n >
1, the randomized p-value of label y assigned to unlabeled instance x,11 is defined
as:

o= Hi=1...n+l:i >anp}|[+7[{i=1....,n+1:05=ans1}|

v n+1 ’
(9)

with T a random number uniformly sampled from [0, 1] for instance 1.

Definition 6. A randomized transductive confidence machine determined by
some nonconformity measure is a function that maps each sequence of examples
21y, 2n with n > 1, unlabeled instance x,+1, uniformly distributed random
number T € [0,1], and significance level € € [0, 1] to the prediction set:

I (21, 2py 1) = {y €V | pj > €} . (10)

A randomized TCM treats the borderline cases «; = ay, 41 more carefully.
Instead of increasing the p-value with 1/(n + 1), the p-value is increased with a
random amount between 0 and 1/(n+1). In the following, we employ randomized
TCMs, although for brevity we simply call them TCMs.

3.2 Calibration Property

In the on-line learning setting, TCMs have been proven to satisfy the calibration
property [17, p. 20-22 & p. 193]. This property states that the long run error
rate of a TCM with significance level € equals e:

Erre
o= 11
T (1)

lim sup
n—oo

with Erry, the number of prediction sets that do not contain the true label, given
the first n prediction sets.* The idea of the proof is to show that the sequence of
prediction outcomes (i.e., whether the prediction set contains the true label or
not) is a sequence of independent Bernoulli random variables with parameter e.

4 In case of non-randomized TCMs, the equality sign in (11) is replaced by the < sign.



From (11) follows that the significance level has a frequentist interpretation as
the limiting frequency of errors. It allows to control the number of errors prior to
classification. The calibration property holds regardless of which nonconformity
measure is used.

In the off-line learning setting there theoretically exists a small probability
that TCMs are not well-calibrated (the training data is kept fixed, and therefore
the prediction outcomes are not independent) [17, p. 111]. Section 4 investigates
empirically whether TCMs are well-calibrated in the off-line learning setting.

3.3 Implementations

This subsection shows that virtually any classifier can be plugged into the TCM
framework. Nonconformity measures are formulated for the following six classi-
fiers: (1) k-nearest neighbour, (2) nearest centroid, (3) linear discriminant, (4)
naive Bayes, (5) kernel perceptron, and (6) support vector machine. Although
the nonconformity measures are based on specific classifier characteristics, they
can readily be applied to similar classifiers. In addition, they provide clear in-
sights in how to define new nonconformity measures.

The implementation of TCMs based on linear discriminant, kernel percep-
tron, and support vector machine considers binary classification tasks. This
is due to the nature of these classifiers. We denote the binary label space as
Y = {—1,+1}. Extensions to multilabel learning are well-known and therefore
not discussed in the paper. We implemented TCMs that can incrementally learn
and decrementally unlearn a single instance, hereby keeping time complexity
low. Pseudo codes of these efficient implementations are found in a technical
report [16].

k-Nearest Neighbour The k-nearest neighbour classifier (k-NN) classifies an
instance by means of majority vote among the labels of the k nearest neighbours
(k> 1) [4]. An example is nonconforming when it is far from nearest neighbours
with identical label and close to nearest neighbours with different label.

A nonconformity measure can model this as follows. Given example z; =
(zi,y;), define an ascending ordered sequence DY’ with distances from instance
z; to its k nearest neighbours with label y;. Similarly, let D; ¥ contain ordered
distances from instance z; to its k nearest neighbours with label different from
yi. The nonconformity score is then defined as:

k )
E :.7 DYi
Q; = 7J_1 Y 9 (12)

== —
Zj:l Dijy

with subscript j representing the j-th element in a sequence [12]. Clearly, the
nonconformity score is monotonically increasing when distances to the k near-
est neighbours with identical label increase and/or distances to the k nearest
neighbours with different label decrease.



Nearest Centroid The nearest centroid classifier (NC) learns a Voronoi par-
tition on the training data. It assumes that examples cluster around a class
centroid. An example is nonconforming when it is far from the class centroid of
its label and close to the class centroids of other labels. Therefore, the noncon-
formity score of example z; = (z;,y;) can be defined as the distance from z; to
the class centroid of y; relative to the minimum distance from x; to all other
class centroids [2]. Formally, we write:

o = — d(uyi7xi) 7 (13)

minycy, d(py, ;)

with 1, the class centroid of label y which is defined as:
1
by = e dow, (14)

with C the set of indices of instances with label y.

Linear Discriminant The linear discriminant classifier (LDC) learns a sepa-
rating hyperplane by maximizing the between scatter of instances with different
labels while minimizing the within scatter of instances with identical labels [6].
Instances close to the hyperplane are classified with low confidence since a small
change in the hyperplane can result in a different classification of nearby in-
stances. Therefore, a natural nonconformity score of example z; = (x;,y;) is the
signed perpendicular distance from z; to the hyperplane:

;= —Y; (<w7xl> + b) ) (15)

with w and b the normal vector and intercept of the hyperplane, and (-, -) the
inner product. If a classification is correct, then the nonconformity score is nega-
tive. A larger distance to the hyperplane represents more confidence in a correct
classification, and consequently a lower nonconformity score is obtained. If a
classification is incorrect, then the nonconformity score is positive and monoton-
ically increasing with larger distances to the hyperplane.

Naive Bayes The naive Bayes classifier (NB) is a probabilistic classifier that
applies Bayes theorem with independence assumptions [5]. A valid nonconfor-
mity score is large if the label of an instance is strange under the Bayesian model
[17, p. 102]. We use the following as nonconformity score of example z; = (x;, y;):

a; =1-=P(y;) , (16)

with P(y;) the conditional probability of label y; that is estimated from the train-
ing data and instance x;, i.e., P(-) is the posterior label distribution computed
by the naive Bayes classifier.’

5 It is tempting to believe that the probabilities P(-) are confidence values. However,
it has been verified that these probabilities are overestimated in case of an incorrect
prior, e.g., classifying with a probability of 0.7 does not mean that the true label is
predicted 70% of the time [10].



Kernel Perceptron The kernel perceptron (KP) learns a separating hyper-
plane by updating a weight vector in a high-dimensional space during training
[9]. The weight vector represents the normal vector and intercept of the hyper-
plane. The expansion of the weight vector in dual form is:

n+1

w = Z )\Zyl@(xz) 5 (17)

with A; the dual variable for instance x; and @ the mapping to the high-
dimensional space. It is easily verified that A\; encodes the number of times
that instance z; is incorrectly classified during training [15, p. 241-242]. Hence,
the nonconformity score of example z; = (z;,y;) can be defined as a; = A; [10].
However, such a nonconformity score is not valid in the sense that the KP solu-
tion depends on the ordering of the training examples. Different KP runs result
in different nonconformity scores. In our experiments we show that this violation
of the exchangeability assumption does not have any effect in practice.

Support Vector Machine The support vector machine (SVM) finds a sepa-
rating hyperplane with maximum margin using pairwise inner products of in-
stances mapped to a high-dimensional space. The inner products are efficiently
computed using a kernel function. The maximum margin hyperplane is found
by solving a quadratic programming problem in dual form [15, Ch. 7].

In this optimization problem, the Lagrange multipliers A1, Ag, ..., Apy1 as-
sociated with examples 21, ..., z,+1 take values in the domain [0, C] with C the
SVM error penalty. Examples with A\; = 0 lie outside the margin and at the
correct side of the hyperplane. Examples with 0 < A; < C also lie at the correct
hyperplane side, but on the margin. Examples with A; = C can lie inside the
margin and at the correct side of the hyperplane, or they can lie at the incor-
rect side of the hyperplane. Clearly, larger Lagrange multipliers represent more
nonconformity and therefore they are valid nonconformity scores, i.e., we define
a; = A; as the nonconformity score of example z; = (z;,y;) [13,14].

4 Experiments

The previous section discussed technical properties and practical implementa-
tions of TCMs. This section empirically investigates whether the calibration
property holds when TCMs are applied in the off-line learning setting. We per-
formed experiments with TCMs on a number of benchmark datasets. Subsection
4.1 briefly describes the datasets that we used. Subsection 4.2 outlines the ex-
perimental setup. Subsection 4.3 presents the results of the experiments.

4.1 Benchmark Datasets

In the following, we denote the aforementioned TCM implementations by the
classifier name and the prefix TCM, e.g., TCM-kNN is the TCM based on the
k-NN nonconformity measure.



We tested the six TCMs on ten well-known binary datasets from the UCI
benchmark repository [11]. The datasets are: heart statlog, house votes,
ionosphere, liver, monksl, monks2, monks3, pima, sonar, and spect. Some
datasets such as liver and sonar are known to be highly non-linear. For these
non-linear datasets, it is especially challenging to verify if TCM-LDC satisfies the
calibration property. The monks datasets are datasets for which distance-based
classifiers can have difficulties [3].

As a preprocessing step, all instances with missing feature values are removed
as well as duplicate instances. Features are standardized to have zero mean and
unit variance to remove possible effects caused by features with different orders
of magnitude.

4.2 Experimental Setup

The classifiers TCM-kNN, TCM-KP, and TCM-SVM require the selection of
one or more parameters. We performed model selection by applying a ten-fold
cross validation process that was repeated for five times. The chosen parameter
values are those for which the number of prediction sets with multiple labels is
minimized for significance levels in the domain [0, 0.2].° The number of nearest
neighbours for TCM-ENN is restricted to k = 1,2,...,10. For TCM-SVM and
TCM-KP we tested polynomial and Gaussian kernels with exponent values e =
1,2,...,10 and bandwidth values ¢ = 0.001,0.01,0.03,0.06, 1, 1.6 respectively.
The SVM error penalty C' is kept fixed at value 10.

Once the parameter values are chosen, TCMs are applied in the off-line learn-
ing setting with ten-fold cross validation. To ensure that results are independent
of the order of examples in the training folds, the experiments were repeated five
times with random permutations of the data. We report the average performance
of all experiments and test folds.

The performance of TCMs is measured by two key statistics. First, the per-
centage of prediction sets that do not contain the true label is measured. This
is the error rate measured as a percentage. Second, we measure efficiency to
indicate how useful the prediction sets are. Efficiency is given by the percent-
ages of three types of prediction sets. The first type are prediction sets with
one label. These prediction sets are called certain predictions. Second, uncertain
predictions correspond to prediction sets with two labels and indicate that both
labels are likely to be correct. Third, prediction sets can also be empty. Clearly,
certain predictions are preferred.

4.3 Results

In this section we report our empirical results of off-line TCMs on the ten bench-
mark datasets. To visualize performance of a TCM, we follow the convention as

5 The conclusions based on our experiments do not depend on the chosen parameter
values. Other values simply result in more prediction sets with multiple labels.



defined in [17]. Results are shown as graphs indicating four values for each signif-
icance level: (1) percentage of incorrect predictions, (2) percentage of uncertain
predictions, (3) percentage of empty predictions, and (4) percentage of incorrect
predictions that are allowed at the significance level. The first value represents
the error rate as a percentage, while the second and third values represent effi-
ciency.” The line connecting the percentage of incorrect predictions allowed at
each significance level is called the error calibration line. As an example, Fig.
1 shows the result of applying TCM-kNN and TCM-NC on the ionosphere
dataset. Graphs of all TCMs and datasets are found in a technical report [16].
In the following we first focus our attention to the calibration property, then we
give some remarks about efficiency.

TCMs satisfy the calibration property if the percentage of incorrect predic-
tions at each significance level lies on the error calibration line. From Fig. 1
follows that the corresponding TCMs are well-calibrated up to neglectable sta-
tistical fluctuations (the empirical error line can hardly be distinguished from
the error calibration line). For example, at ¢ = 0.05 approximately 5% of the
prediction sets do not contain the true label. Table 1 verifies the calibration
property for all TCMs and datasets by reporting the average deviation between
empirical errors and the the error calibration line for e = 0,0.01,...,0.50. We do
not consider significance levels above 0.5 since these result in classifiers for which
more than 50% of the prediction sets do not contain the true label. Deviations
are given in percentages and are almost zero, indicating that TCMs satisfy the
calibration property when they are applied in the off-line learning setting. Note
that we included datasets for which some classifiers have difficulties to achieve
a low error rate (Subsection 4.1). Even for these datasets and classifiers, Table
1 reports deviations that are almost zero.

To measure efficiency we note that the percentage of uncertain predictions
is 100% when € = 0 since the computed prediction sets contain all labels. We
allow for more incorrect predictions when the significance level is set to a higher
value. Therefore, the percentage of uncertain predictions monotonically decreases
with higher significance levels. How fast this decline goes depends on the per-
formance of the classifier plugged into the TCM framework. This means that
k-NN performs significantly better than NC on the ionosphere dataset, as il-
lustrated by Fig. 1. The percentage of empty predictions starts to occur at
approximately the significance level for which there are no more uncertain pre-
dictions. The percentage of empty predictions monotonically increases after this
significance level, moving closer to the error calibration line to eventually lie on
this line. To summarize efficiency for the ionosphere dataset, we consider four
significance levels that we believe to be of interest in many practical situations:
e = 0.20,0.15,0.10,0.05. For these significance levels, Table 2 reports means
and standard deviations for the percentage of incorrect, certain, and empty pre-
dictions of all six TCMs. Of course, Table 2 again verifies that the calibration

" The percentage of certain predictions is trivially derived from the reported per-
centages of the other types of prediction sets. Note that the percentage of empty
predictions is at most the percentage of incorrect predictions.
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Fig. 1. Results of two TCMs applied on the ionosphere dataset in the off-line learning
setting: (a) TCM-KNN and (b) TCM-NC.



Table 1. The deviations between empirical errors and the error calibration line. Values
are reported as percentages.

TCM-kKNN TCM-NC TCM-LDC TCM-NB TCM-KP TCM-SVM

heart statlog 0.34 0.59 0.35 0.20 0.25 0.31
house votes 0.33 0.27 0.38 0.29 0.53 0.28
ionosphere 0.21 0.81 0.31 0.28 0.33 0.38
liver 0.62 1.35 0.35 0.43 0.47 0.23
monks1 0.98 1.02 0.40 0.60 0.26 0.40
monks2 0.49 1.29 0.46 0.29 0.27 0.36
monks3 0.32 0.51 0.22 0.52 0.21 0.45
pima 0.21 0.28 0.13 0.16 0.16 0.16
sonar 0.59 1.09 0.38 0.32 0.46 0.67
spect 0.35 1.06 0.36 0.58 0.51 0.61

property holds. The reported standard deviations may not seem that small. How-
ever, the number of instances in a single test fold is small for the ionosphere
dataset (35 test instances). All values correspond to our discussion of efficiency.
Efficiency results for the other datasets are similar and presented in a technical
report [16].

5 Discussion

This section elaborates more on the difference between randomized and non-
randomized TCMs, and on the meaning of empty prediction sets.

In our experiments with non-randomized TCMs, we found that the line con-
necting the empirical errors of a non-randomized TCM-SVM is a step function
that tends to stay below the error calibration line (results not shown, see [16] for
an example). The reason for this observation is as follows. There are two possible
scenarios when a new example is added to the training examples. First, the new
example may be a support vector. The difference between the randomized p-
value and the non-randomized p-value is then small since the number of support
vectors with equal nonconformity score is only a small fraction of the available
examples. Second, the new example may be a non-support vector. The random-
ized p-value is then significantly smaller than the non-randomized p-value since
all non-support vectors have equal nonconformity score. This implies that the
non-randomized TCM-SVM will compute less empty prediction sets than the
randomized TCM-SVM. Therefore, the empirical error line becomes a step func-
tion since empty prediction sets are counted as errors. A similar reasoning holds
for the difference between a non-randomized TCM-KP and a randomized TCM-
KP. For the remaining TCM implementations, a non-randomized version did not
led to significantly different results than a randomized version. Indeed, when the
nonconformity scores take values in a large domain, then the difference between
non-randomized and randomized TCMs is neglectable.



Table 2. Results of the six TCMs applied on the ionosphere dataset in the off-line
learning setting.

classifier % error % certain % empty
€ mean  std mean std mean  std
TCM-ENN
0.20 19.71  7.66 89.43 5.75 10.57 5.75
0.15 14.86 7.05 97.26 3.96 2.63 3.99
0.10 9.66 5.59 90.69 6.34 0.00 0.00
0.05 4.46 4.25 72.97 8.62 0.00 0.00
TCM-NC
0.20 21.94 7.86 91.14 4.87 0.00 0.00
0.15 15.40 6.80 82.80 5.87 0.00 0.00
0.10 10.23  6.00 70.86 6.88 0.00 0.00
0.05 4.69 4.27 48.00 8.79 0.00 0.00
TCM-LDC
0.20 19.71 6.86 87.60 5.96 12.34 5.96
0.15 14.69 6.38 93.71 3.74 5.43 3.75
0.10 10.00 5.24 95.31 3.86 0.11 0.57
0.05 5.14 4.32 81.71 6.76 0.00 0.00
TCM-NB
0.20 19.88 8.20 95.42 4.20 4.57 4.20
0.15 14.74 7.12 93.82 4.91 0.00 0.00
0.10 9.71 5.88 83.82 7.67 0.00 0.00
0.05 4.80 4.18 71.82 8.62 0.00 0.00
TCM-KP
0.20 20.11 6.88 88.86 5.51 11.09 5.59
0.15 14.74  5.90 96.11 3.20 2.06 2.77
0.10 8.80 5.22 89.83 5.39 0.00 0.00
0.05 5.37 4.57 70.40 10.01 0.00 0.00
TCM-SVM
0.20 20.06  8.67 81.14 8.26 18.86  8.26
0.15 15.31 7.48 86.06 6.97 13.31  7.11
0.10 10.29 6.85 77.03 591 7.20 5.42

0.05 531  4.55 52.34  9.51 2.69  3.48



Empty prediction sets indicate that the classification task has become too
easy: we can afford the luxury of refusing to make a prediction. Thus, empty
prediction sets are a tool to satisfy the calibration property for high significance
levels. In fact, the significance level for which empty prediction sets start to arise
is approximately equal to the error rate of the classifier when it is not plugged
into the TCM framework. To avoid empty predictions, TCMs can be modified to
include the label with highest p-value into the prediction set, even though this
p-value can be smaller than or equal to the significance level. In this situation,
the percentage of empirical errors will also become a step function below the
error calibration line since an empty prediction set was previously counted as an
error. The significance level now gives an upper bound on the error rate, although
we do not know how tight this bound is. The resulting TCMs are called forced
TCMs and they are said to be conservatively well-calibrated [1].

6 Conclusions

In this paper we focused on the applicability and validity of transductive confi-
dence machines (TCMs) applied in the off-line learning setting. TCMs allow to
make predictions such that the error rate is controlled a priori by the user. This
property is called the calibration property. An analytical proof of the calibration
property exists when TCMs are applied in the on-line learning setting. However,
this learning setting restricts the applicability of TCMs.

We provided an extensive empirical evaluation of TCMs applied in the off-
line learning setting. Six TCM implementations with different nonconformity
measures were applied on ten well-known benchmark datasets. From the results
of our experiments we may conclude that TCMs satisfy the calibration property
in the off-line learning setting, hereby strongly extending the range of tasks in
which they can be applied. TCMs have a significant benefit over conventional
classifiers for which the error rate cannot be controlled by the user prior to clas-
sification, especially in tasks where reliable instance classifications are desired.

Since TCMs have now been shown to be widely applicable and well-calibrated
in virtually any application domain, our future work focuses on efficiency. We
noticed that the chosen nonconformity measure affects efficiency while it does
not violate the upper bound on the error rate. Our next goal is to minimize the
size of the computed prediction sets, especially in case of multilabel learning.
We believe that this can be achieved with a new nonconformity measure. Our
interest is a measure that is independent of the specific TCM implementation
and that is designed to provide a confidence value on nonconformity scores too.
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