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Abstract

Deep learning has been successfully applied
to perform non-linear embedding. In this pa-
per, we present supervised embedding tech-
niques that use a deep network to collapse
classes. The network is pre-trained using
a stack of RBMs, and finetuned using ap-
proaches that try to collapse classes. The
finetuning is inspired by ideas from NCA, but
it uses a Student t-distribution to model the
similarities of data points belonging to the
same class in the embedding. We investi-
gate two types of objective functions: deep
t-distributed MCML (dt-MCML) and deep t-
distributed NCA (dt-NCA). Our experiments
on two handwritten digit data sets reveal the
strong performance of dt-MCML in super-
vised parametric data visualization, whereas
dt-NCA outperforms alternative techniques
when embeddings with more than two or
three dimensions are constructed, e.g., to ob-
tain good classification performances. Over-
all, our results demonstrate the advantage of
using a deep architecture and a heavy-tailed
t-distribution for measuring pairwise similar-
ities in supervised embedding.

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

1. Introduction

Given the class information of training data points,
linear feature transformations and linear dimension-
ality reductions have been widely applied to perform
high-dimensional data embedding either for data visu-
alization or for k-NN classification. Various techniques
have been proposed that learn a linear transforma-
tion or Mahalanobis metric that tries to decrease the
pairwise distances between data points with the same
class, while increasing the separation between data
points with dissimilar classes (Globerson & Roweis,
2006; Goldberger et al., 2005; Weinberger et al., 2006;
Xing et al., 2003). In other words, the techniques aim
to collapse classes in a low-dimensional embedding1.

However, making data points that correspond the
same class collapse cannot always be achieved simple
linear transformations, especially when the data con-
sists of one or more complex nonlinear (sub)manifolds.
Hence, we need to resort to more powerful non-linear
transformations. Recent advances in the training of
deep networks provide a way to model non-linear
transformations of data. Such deep networks are typ-
ically pre-trained using, e.g., a stack of Restricted
Boltzmann Machines (RBMs; Hinton et al. (2006)) or
denoising autoencoders (Larochelle et al., 2007). Sub-
sequently, the pre-trained networks are finetuned as to,

1In techniques that learn a Mahalanobis metric, this
embedding can be computed by projecting the data onto
the eigenvectors of the metric M (weighted by the square-
root of the corresponding eigenvalues).
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e.g., construct a generative model of the data (Hinton
et al., 2006), learn a classifier (Larochelle et al., 2007),
increase the separation between classes (Min et al.,
2009; Salakhutdinov & Hinton, 2007; Weston et al.,
2008), or preserve pairwise similarities between data
points (van der Maaten, 2009).

In this paper, we present two supervised embed-
ding techniques, called deep t-distributed MCML (dt-
MCML) and deep t-distributed NCA (dt-NCA), that
use a deep feedforward neural network to model the
transformation from the high-dimensional to the low-
dimensional space. The networks are pre-trained us-
ing a stack of RBMs, and finetuned by minimiz-
ing objective functions that aim to collapse classes.
The objective functions are inspired by the objective
functions of Maximally Collapsing Metric Learning
(MCML; Globerson & Roweis (2006)) and Neighbor-
hood Components Analysis (NCA; Goldberger et al.
(2005)), but they use a Student t-distribution to
measure the similarities for pairwise data points in
low-dimensional space. The advantage of using a t-
distribution to measure these pairwise similarities is
four-fold: (1) due to the heavier tail of the distri-
bution, it works better on data sets in which (some
of) the class distributions are multimodal, (2) due to
the more peaked mode of the distribution, it leads to
tighter clusters, i.e., it collapses classes better, (3) the
heavier tails lead to more separation between classes,
and (4) due to the steeper gradient along the tail of the
t-distribution, the optimization using gradient descent
is easier.

We performed experiments with dt-MCML and dt-
NCA on the USPS and MNIST handwritten digit data
sets. The results of the experiments reveal the strong
performance of both techniques. In particular, dt-
MCML performs very well in learning settings in which
the dimensionality of the latent space is very low, e.g.,
when performing data visualization. In contrast, if the
dimensionality of the latent space is higher than two,
dt-NCA obtains a superior performance.

The outline of this paper is as follows. In Section 2, we
introduce the two new embedding techniques, called
dt-MCML and dt-NCA. In Section 3, we present the
results of our experiments with the new techniques on
two data sets. Section 4 concludes the paper.

2. Deep Supervised Embedding

In this section, we present the two new techniques
for supervised parametric embedding. We present dt-
MCML in Section 2.1, and dt-NCA in Section 2.2.

Figure 1. The deep network used in dt-MCML and dt-NCA
(left) and an illustration of the pre-training of the deep
neural network (right). Adopted from Min et al. (2009).

2.1. Deep t-distributed MCML

Suppose we are given a set of high-dimensional data
points and their corresponding labels D = {x(i), y(i) :
i = 1, . . . , n}, where x(i) ∈ RD, and y(i) ∈ {1, . . . , c},
where c is the total number of classes. MCML learns
a Mahalanobis metric M that aims to simultaneously
achieve two main goals: (1) it tries to maximize the
sum of the pairwise similarities of data points with
the same class, and (2) it tries to minimize the sum of
the pairwise similarities of data points with dissimilar
classes. In fact, learning a Mahalanobis metric is iden-
tical to learning a linear mapping A of the data: the
linear mapping A is given by the eigenvectors of the
Mahalanobis metric M (weighted by the square-root
of their corresponding eigenvalues). MCML can thus

be thought of as learning a function f(x(i)) = Ax(i)

that transforms the high-dimensional data points to
a latent space with d dimensions (i.e., A is a d × D
matrix, where typically, d < D).

MCML measures the pairwise similarity of the trans-
formed data point f(x(i)) and the transformed data
point f(x(j)) using a stochastic neighborhood crite-
rion. In other words, it centers a Gaussian distribution
over f(x(i)), measures the density of f(x(j)) under this
Gaussian, and renormalizes:

qj|i =
exp(−d2ij)∑

k:k 6=i exp(−d2ik)
, qi|i = 0, (1)

where we defined:

d2ij = ||f(x(i))− f(x(j))||2.

The probabilities qj|i can be viewed as the probability
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that the point f(x(i)) picks point f(x(j)) as its nearest
neighbor in the latent space. MCML tries to minimize
the sum of the Kullback-Leibler divergences between
the conditional probabilities qj|i and “ground-truth”
probabilities pj|i that are defined based on the class
labels of the data. Specifically, MCML defines pj|i ∝ 1

iff y(i) = y(j), and pj|i = 0 iff y(i) 6= y(j). The cost
function that MCML minimizes is given by:

`MCML =
∑
i

KL(Pi||Qi) =
∑
i

∑
j:j 6=i

pj|i log
pj|i

qj|i
.

In deep t-distributed MCML, we follow a similar ap-
proach as in MCML, however, we introduce three ma-
jor changes. First, instead of parametrizing the func-
tion f by means of a linear mapping A, we define the
function f to be a feedforward neural network map-
ping that is parametrized by the weights of the net-
work W . Second, instead of measuring the similarities
of the transformed data points by means of a Gaussian
density, we measure densities under a Student-t distri-
bution. Third, we change the normalization of the
pairwise similarities, as this leads to significant simpli-
fications in the gradient. Mathematically, we define:

qij =
(1 + d2ij/α)−

1+α
2∑

kl:k 6=l(1 + d2kl/α)−
1+α
2

, qii = 0, (2)

where α is represents the number of degrees of freedom
of the Student-t distribution. The reader should note
that the following special cases of the t-distribution:
when α = 1, the t-distribution is a Cauchy distribu-
tion, whereas when α = ∞, the t-distribution is a
Gaussian distribution. The cost function is now de-
fined to be:

`dt−MCML = KL(P ||Q) =
∑
i

∑
j:j 6=i

pij log
pij
qij
,

where pij ∝ 1 iff y(i) = y(j), pij = 0 iff y(i) 6= y(j), and∑
ij pij = 1.

In the definition of qij above, the pairwise distance
d2ij is defined similarly as in NCA, except for that the
transformation function f is not linear anymore. In
particular, the function f : RD → Rd is a nonlinear
function that is defined by a feed-forward neural net-
work with weights W . The advantage of using a deep
network to parametrize the function f instead of a lin-
ear mapping is that a deep network is better at learn-
ing the complex nonlinear function that is presumably
required to collapse classes in the latent space, in par-
ticular, when the data consists of very complex non-
linear (sub)manifolds.

The use of a Student-t distribution in the pairwise
similarities in Equation 2 has four main advantages

over the use of a Gaussian distribution (as in Equa-
tion 1). First, the heavy tails of the Student-t distri-
bution make the cost function somewhat more happy
when groups of dissimilar points with the same class
are modeled far apart in the latent space. This is
beneficial in cases in which the distribution of one or
more classes is bimodal or multimodal: collapsing data
points from the different modes onto a single mode in
the latent space is bound to lead to severe overfitting.
Second, the peaked mode of the t-distribution (com-
pared to a Gaussian distribution) leads the cost func-
tion to favor solutions in which similar points with the
same class are modeled closer together, i.e., it leads
to tighter clusters in the embedding. Third, the use
of t-distribution forces points with different classes to
be further apart in the latent space in order for their
similarity to become infinitesimal. Fourth, the use of
Student-t distributions makes the gradient optimiza-
tion easier, because the gradient of the tail of a Student
t-distribution is much steeper than that of a Gaussian
distribution. As a result, the t-distribution provides
more “long-range forces”, which makes it easier to col-
lapse groups of points with the same class that are
separated at some point in the optimization.

The gradient of the cost function of dt-MCML with
respect to the location of a latent point f(x(i)) is given
by:

∂`dt−MCML

∂f(x(i))
=
∑
j:j 6=i

2(α+ 1)

α

(
1 +

d2ij
α

)− 1+α
2

(pij − qij)(f(x(i))− f(x(j))).

Using the gradient above, the gradients of the cost
function with respect to the weights W of the neural
network can be computed using standard backpropa-
gation. Although it is possible to treat the degrees of
freedom α as a parameter, we can also try to learn
its optimal value using gradient descent. The required
gradient is given by:

∂`dt−MCML

∂α
=
∑
ij:i 6=j

(pij − qij)

(
1

2
log

(
1 +

d2ij
α

)

−
(1 + α)d2ij

2α2(1 +
d2ij
α )

 .

We should note that for visualization purposes, a value
of α = 1 usually performs very well (van der Maaten,
2009), and learning α is superfluous.

2.2. Deep t-distributed NCA

Collapsing classes typically works well for data visu-
alization tasks (Globerson & Roweis, 2006), but col-
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lapsing classes is unnecessary to obtain low nearest
neighbor errors after high-dimensional data was em-
bedded in a space with a dimensionality that is larger
than, say, two. If the dimensionality of the data is
reduced to, say, 30 dimensions, the volume difference
between the data space and the latent space is expo-
nentially smaller than when the dimensionality of the
data is reduced to two dimensions. More importantly,
the dimensionality of the latent space can be selected
as to match the intrinsic dimensionality of input data.
In that case, it is not necessary to completely collapse
classes to obtain low nearest neighbor errors, in par-
ticular, since collapsing classes may lead to overfitting.
Hence, in learning settings in which the dimensionality
of the latent space is relatively large, directly minimiz-
ing a smooth approximation to the nearest neighbor
error, as is done in NCA, may work much better. To
this end, we investigate a variant of NCA, called deep
t-distributed NCA (dt-NCA), that also parametrizes
the mapping from the data to the latent space by
means of a deep neural network2 and that measures
similarities in the latent space using a t-distribution.

The key difference between dt-NCA and dt-MCML,
analogous to the key difference between NCA and
MCML, is in the cost function that is minimized.
In particular, dt-NCA tries to minimize the expected
nearest neighbor error by minimizing a smooth ap-
proximation of the nearest neighbor error:

`dt−NCA = −
∑
ij:i 6=j

δijqj|i,

where δij represents an indicator function, i.e., δij
equals 1 if y(i) = y(j) and 0 otherwise, and where we
used an asymmetric definition for the similarities qj|i:

qj|i =
(1 + d2ij/α)−

1+α
2∑

k:k 6=i(1 + d2ik/α)−
1+α
2

, qi|i = 0.

The motivation behind this definition of the similari-
ties in the latent space is identical to the motivation for
the similarities in dt-MCML: it helps preventing over-
fitting, it constructs tighter natural clusters of points
with the same class, it improves separation between
points with different classes, and it makes the gradi-
ent optimization easier due to the presence of more
longe-range forces.

If we define uij =
(

1 +
d2ij
α

)− 1+α
2

and vij = f(x(i)) −
f(x(j)), the gradient of `dt−NCA with respect to the

2The reader should note another nonlinear variant of
NCA was previously investigated by Salakhutdinov & Hin-
ton (2007).

data representation in the latent space f(x(i)) is given
by:

∂`dt−NCA
∂f(x(i))

=
1 + α

α

∑
j:j 6=i

δijqj|i

∑
k:k 6=i

qk|iuikvik


+
∑
j:j 6=i

qi|jujivji

∑
k:k 6=j

δjkqk|j


−
∑
j:j 6=i

δijqj|iuijvij −
∑
j:j 6=i

δjiqi|jujivji

 .
The gradient of `dt−NCA with respect to α can be cal-
culated as follows:

∂`dt−NCA
∂α

=
∑
i

∑
j:i 6=j

δijqi|j

(
1 + α

2
uijd

2
ijα
−2

−1

2
log uij

)
−
∑
i

∑
j:j 6=i

δijqj|i∑
k:k 6=i

qk|i

(
1 + α

2
uikd

2
ikα
−2 − 1

2
log uik

) .

3. Experiments

We performed experiments with dt-MCML and dt-
NCA on the USPS and MNIST handwritten digit data
sets in order to evaluate their performance. In order to
investigate the effect of using a t-distribution instead
of a Gaussian distribution to measure similarities in
the latent space, we compare dt-MCML and dt-NCA
to their counterparts that use a Gaussian distribution
to measure the similarities (but that use the same deep
neural network as parametrization of the function f).
We refer to these variants as dG-MCML and dG-NCA,
respectively. Both the pre-training and the finetuning
for dG-MCML and dG-NCA are identical to the pre-
training and the finetuning of dt-MCML and dt-NCA,
except for that the Student-t distributions in the def-
inition of qij and qj|i are replaced by Gaussian distri-

butions (with variance σ = 1√
2
), respectively. Note

that this replacement also leads to different gradients
of the respective cost functions (the gradients for dG-
NCA are derived by Salakhutdinov & Hinton (2007)).

In our experiments, we used the same network struc-
ture that was proposed by Salakhutdinov & Hinton
(2007), i.e, we use a D−500−500−2000−d network.
Our selection of this architecture facilitates compar-
isons with methods used in other papers. We pre-
trained all neural networks using the pre-training pro-
cedure described by Hinton & Salakhutdinov (2006).
Following Hinton & Salakhutdinov (2006), we trained
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Dimensionality d 2D 30D
MCML 35.63± 0.44 5.53± 0.39
dG-MCML 3.37± 0.18 1.67± 0.21
dt-MCML (α = d− 1) 2.46± 0.35 1.73± 0.47
dt-MCML (learned α) 2.80± 0.36 1.61± 0.36
dG-NCA 10.22± 0.76 1.91± 0.22
dt-NCA (α = d− 1) 5.11± 0.28 1.15± 0.21
dt-NCA (learned α) 6.69± 0.92 1.17± 0.07

Table 1. Mean and standard deviation of test error (in %)
on 2-dimensional and 30-dimensional embedding for vari-
ous techniques on the 6 splits of USPS data set.

the RBMs using contrastive divergence with one Gibbs
sweep (CD-1) for 50 iterations using mini-batches of
100 instances, a learning rate of 0.1, and L2 regular-
ization of the weights with a regularization parameter
of 2 × 10−4. We use a momentum of 0.5 in the first
5 iterations, and a momentum of 0.9 in subsequent
iterations.

The finetuning is performed by running conjugate gra-
dients (without weight decay) until convergence. In
the finetuning phase, we continue the training of dG-
MCML, dt-MCML, dG-NCA, and dt-NCA until the
value of the cost function measured on the training
set does not decrease anymore. We performed classifi-
cation experiments on the latent representation of the
data using a k-nearest neighbor classifier with k = 5.
In the experiments with dt-MCML and dt-NCA in
which we learn α, we train using α = d − 1 for one
epoch first, and we update W and α simultaneously in
the subsequent iterations.

3.1. Experimental Results on USPS Data Set

The USPS data set contains 11, 000 images of hand-
written digits. In the data set, each digit is represented
by a 16×16 pixel gray-level image, i.e., the dimension-
ality of the data set is 256. We constructed six random
splits of the USPS data set into a training set of 8, 000
images and a test set of 3, 000 images, and we mea-
sured generalization performances that were averaged
over these six splits.

Table 1 presents the mean classification performances
of 5-nearest neighbor classifiers that were trained on
embeddings constructed by various techniques, as well
as the corresponding standard deviations. The best
performance is typeset in boldface. The results show
that dt-MCML outperforms all other methods in terms
of classification errors measured on a two-dimensional
embedding. On a 30-dimensional embedding, the ta-
ble reveals that dt-NCA (with learned α) outperforms
the other techniques. The results also show that dt-

MCML always outperforms dG-MCML, and that dt-
NCA always outperforms dG-NCA. Both dt-MCML
and dt-NCA perform much much better than stan-
dard linear MCML. We did not run linear NCA on
the USPS data set, but in (Goldberger et al., 2005),
the authors report a classification error on a two-
dimensional embedding constructed by NCA of ap-
proximately 30%, which is much higher than our best
classification error of 2.46% on a two-dimensional em-
bedding.

Figure 2 shows embeddings of 3, 000 test data points
in the USPS-fixed split that were constructed by, re-
spectively, dG-MCML, dt-MCML, dG-NCA, and dt-
NCA. The embedding constructed by linear MCML is
included in the supplemental material. The plots in
Figure 2 suggest that dt-MCML produced the best
embedding. It puts almost all the data points in
the same class close to each other, and it creates
large separations between class clusters. The embed-
dings reveal that both dt-NCA and dt-MCML allow
large gaps to form between classes, whereas dG-NCA
and dG-MCML must allow for more overlaps between
classes. Comparing dt-MCML and dt-NCA, we find
that dt-NCA allows data points in the same class to be
placed at multiple locations, whereas dt-MCML only
maintains one large cluster. This is because dt-NCA
maximizes the sum of probabilities qj|i’s, whereas dt-
MCML maximizes the product of the qij ’s.

3.2. Experimental Results on MNIST Data Set

We also performed experiments on the MNIST data
set. The MNIST data set contains gray-level images
with 28×28 = 784 pixels. The data set contains 60, 000
training samples and 10, 000 test samples. Because of
the large number of training samples in the MNIST
data set, we were forced to use batch training using
batches of 10, 000 training samples. Because, of the
size of the MNIST data set, we could not perform ex-
periments using MCML (the projected gradient proce-
dure using in MCML requires the eigendecomposition
of n× n matrices).

Table 2 presents the classification performance of near-
est neighbor classifiers on embedding constructed by
the various techniques (computed on the standard
MNIST test set). Again, dt-MCML outperforms
the other techniques when embedding into two di-
mensions. In comparison, the test errors of linear
NCA (Goldberger et al., 2005), autoencoders (Hin-
ton & Salakhutdinov, 2006), parametric t-SNE with
α = 1 (van der Maaten, 2009), parametric t-SNE with
learned α, and DNet-kNN (Min et al., 2009) on two-
dimensional embeddings of the MNIST data set are,
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Figure 2. Two-dimensional embeddings of 3, 000 USPS test data points constructed by dG-MCML (top left), dt-MCML
(top right), dG-NCA (bottom left), and dt-NCA (bottom right).

respectively, 56.84%, 24.7%, 9.9%, 12.68%, and 2.65%.
By contrast, the error obtained by dt-MCML is 2.03%.

The results in Table 2 also reveal that, when we are
embedding into 30 dimensions, dt-NCA (learned α)
outperforms all other techniques. The best perfor-
mance of dt-NCA of 0.92% is on par with the state-
of-the-art results on the MNIST techniques (if adding
perturbed digits to the training data is not allowed).

Figure 3 shows embeddings of the 10, 000 test data
points in the MNIST data set constructed by the var-
ious techniques. The embeddings reveal that both
dt-NCA and dt-MCML form large separations be-
tween classes, whereas dG-NCA and dG-MCML pro-
duce overlaps between many of the classes in the data.

4. Concluding Remarks

In this paper, we presented two techniques for super-
vised parametric dimensionality reduction that used
deep networks. The experimental results presented
in the previous section reveal that dt-MCML out-
performs its linear counterpart MCML and its Gaus-
sian counterpart with a deep architecture (dG-MCML)
when it is used to construct two-dimensional em-
beddings, whereas dt-NCA outperforms its linear
counterpart and its Gaussian counterpart (dG-NCA;
Salakhutdinov & Hinton (2007)) when it is used to em-
bed data into a space with a dimensionality larger than
two. Taken together, our results demonstrate the ad-
vantage of using a deep architecture to parametrize the
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Figure 3. Two-dimensional embeddings of 10, 000 MNIST test data points constructed by dG-MCML (top left), dt-MCML
(top right), dG-NCA (bottom left), and dt-NCA (bottom right).

Dimensionality d 2D 30D
dG-MCML 2.13 1.49
dt-MCML (α = d− 1) 2.03 1.63
dt-MCML (learned α) 2.14 1.49
dG-NCA 7.95 1.11
dt-NCA (α = d− 1) 3.48 0.92
dt-NCA (learned α) 3.79 0.93

Table 2. Test error (in %) on 2-dimensional and 30-
dimensional embedding for various techniques on the
MNIST data set.

mapping, as well as the merits of using a heavy-tailed
Student t-distribution to measure the pairwise sim-
ilarities between the low-dimensional representations
of the data points.

We did not yet explain in detail why dt-MCML per-
forms better than dt-NCA when constructing two-
dimensional embeddings, wheras dt-NCA performs
better than dt-MCML when constructing embeddings
of a higher dimensionality. This is because dt-MCML
tries to collapse all the data points in each class to
one point by maximizing the product of the probabil-
ities qij , whereas dt-NCA tries to bring data points in
the same class together by maximizing the sum of the
asymmetric probabilities qj|i. As a result, when em-
bedding into two dimensions, the objective of dt-NCA
can be roughly maximized by setting some of the qi|j ’s
very large and others very small on training data, to
compromise for the limited amount of space available
in a two-dimensional space. By contrast, such a set-
ting of the qij ’s is not favored by dt-MCML. In fact,
the dt-MCML cost function typically does not allow
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some of the qij ’s to be set very small, thus prohibiting
data points in the same class from spreading out. This
property of dt-MCML has advantages and disadvan-
tages. When embedding in a two-dimensional space,
collapsing classes is often good because the available
space to accommodate multiple clusters corresponding
to the same class is very limited. However, in latent
spaces with a higher dimensionality, there is enough
space to accommodate dissimilar data points, as a re-
sult of which the collapsing of classes becomes super-
fluous and leads to overfitting. In contrast, dt-NCA
does not require all the data points in the same class
to stay very close to each other in the latent space, as
a result of which it performs better when embedding
in a, say, 30-dimensional latent space.

The success of dt-MCML is closely related to the re-
cent success of t-SNE (van der Maaten & Hinton, 2008)
in unsupervised dimensionality reduction. However,
the reader should note that the reason for the suc-
cess of t-SNE is a different one. In t-SNE, the use of
the Student t-distribution helps to avoid the crowd-
ing problem. The crowding problem occurs when one
tries to preserve local similarity structure in a low-
dimensional data representation, which forces one to
model dissimilar points to far apart. The use of the
Student-t distribution resolves this problem, because it
allows dissimilar points to modeled to far apart. In dt-
MCML, the aim of the use of a Student t-distribution
is to force data points with the same class to collapse
better, i.e., to form tight clusters, while increasing the
gaps between points with dissimilar labels. The latter
characteristic of dt-MCML and dt-NCA is shared with
t-SNE: they all encourage larger separations to form
between different natural clusters.

An additional advantage of dt-MCML over MCML
that we did not discuss yet is its computational com-
plexity. Even though dt-MCML is the deep non-
linear extension of MCML, dt-MCML scales very well
to massive high-dimensional data sets (although this
does require a batch training procedure). By contrast,
MCML is slow when it is applied on large data sets
(even in batch training procedures) because it uses
a projected gradient descent optimizer that performs
many eigendecompositions of n× n matrices.

In future work, we aim to investigate extensions of dt-
MCML and dt-NCA that include an additional term
penalizing reconstruction error from a deep autoen-
coder in order to improve the performance of our ap-
proach in semi-supervised learning settings. Moreover,
we aim to investigate pre-training approaches using de-
noising autoencoders instead of RBMs.
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