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Abstract—Stereo confidence measures are one of the most
popular research topics in stereo vision. These measures give
an indication about the certainty of the matching. The main aim
of using confidence measures is to filter the erroneous disparity
estimations at the end of the matching process. However, they can
also be incorporated at the initial step of the matching process
to obtain accurate estimations before the cost aggregation. In
this paper, we propose to utilize stereo confidence measures for
fusing different similarity measures in order to obtain robust
estimations for aggregation. Since stereo similarity measures
perform differently in varying conditions, the confidence-guided
fusion of them makes stereo matching more robust against errors.
We evaluate the performance of our algorithm in comparison
to different similarity measures on the Middleburry benchmark
stereo test set. The results show significant improvements on the
accuracy of initial disparity estimations with our fusion strategy
compared to different similarity measures.

I. INTRODUCTION

Stereo matching has been an extensively researched topic
of computer vision especially with the introduction of the
benchmark Middleburry stereo dataset [1] in the last decade.
The stereo algorithms can be grouped into two classes, namely,
global and local stereo matching. Global stereo matching
algorithms provide accurate estimations with their global
smoothness assumptions but they are computationally expen-
sive [2], [3], [4]. In contrast, local stereo algorithms are not as
computationally intensive as global algorithms but the quality
of the disparity estimations can be lower because of their
local inference [5], [6]. For all algorithms in both groups, cost
initialization is a significant step.

In general, stereo algorithms are composed of four steps:
cost initialization, cost aggregation, disparity selection and
refinement. The cost initialization is performed using stereo
similarity measures at pixel level. There exists a variety of
different similarity measures that can be used in stereo and
provide different performances at different conditions [7]. In
cost aggregation step, the initial matching costs, called dispar-
ity space image (DSI), are aggregated over a neighbourhood
of pixels to increase the accuracy of the measurements. At the
third step, the disparity of the pixels are generally selected by
using the winner-take-all algorithm. At the final step, different
filters such as median and mean are used to filter out the wrong
matches.

In order to improve stereo matching, recent research
focuses on improving the accuracy and speed of the cost
aggregation step [6], [8], [9]. However, improving the initial
DSI quality can also increase the accuracy of the final disparity
estimations. Klaus et al. [10] fused gradient and intensity

information linearly in order to obtain a more robust initial
DSI for further processing. Mei et al. [11] fused DSI of
census and color similarities in order to increase the accuracy
of the final estimation. While increasing the matching accuracy
significantly, the aforementioned algorithms do not provide a
parameter-free method to fuse any number of similarity mea-
sures. To fuse any number of similarity measures without any
parameters that depends on the measures, we need to calculate
the performance of different similarity metrics at different
locations at the image. After the performance of each similarity
measure is known, any number of similarity measures can be
fused adaptively with respect to their confidence.

Stereo confidences are incorporated to measure the confi-
dence of the matching scores. As the confidence gets higher at
a pixel, the probability of that pixel to have a correct disparity
increases. An extensive evaluation of stereo confidences can
be found in [12]. The stereo confidences are generally used
for filtering wrong disparity estimations in stereo matching
algorithms [13], [14], [15], [16]. We incorporate stereo confi-
dences in the adaptive fusion of multiple similarity measures.
Since stereo confidence measures indicate the certainty of the
matching, the weights of each similarity measure in adaptive
fusion can be chosen proportional to their confidence measure.

In this work, we propose a novel fusion strategy based on
stereo confidence and consensus of matched pixels to fuse any
number of stereo similarity measures to improve the accuracy
of matching. Each pixel is first matched to a pixel in the
target image using each one of different similarity measures.
The confidence of the matching is calculated using Left Right
Difference (LRD) metric which is one of the top performer
stereo confidence metrics in [12]. We build a consensus for
each pixel based on the confidences and winner disparities
for each similarity measure of a local neighbourhood. The
similarities that provide the winner of the consensus are fused
by confidence-based weighting. While providing significant
increase on the accuracy, our algorithm can fuse any number
of similarity measures, requires no additional parameters and
can provide different combinations of similarity measures for
different regions of the image. To our knowledge, we are the
first to propose such an algorithm in the stereo literature.

The similarity measures that are used in our experiments
and the details about LRD is described in Section 2. In
section 3, we describe our fusion algorithm. We evaluate the
performance of our algorithm in Section 4. In Section 5, we
draw our conclusions.



II. STEREO CONFIDENCE AND SIMILARITY MEASURES

Our algorithm starts with calculating the similarity mea-
sures. As the next step, the confidence of each similarity
measure is calculated using LRD. At the last step, the similarity
measures are fused using a novel confidence and consensus
based similarity fusion algorithm.

In this section, we describe the similarity and confidence
measures that we incorporated in our experiments. In the next
section, we will introduce our fusion algorithm.

A. Similarity Measures

The DSI consist of cost measures C(x, y, d) that measures
the penalty for assigning disparity d to the image location
(x, y). This penalty can be calculated using different met-
rics. Below, we shortly describe our implementation of seven
different cost measures that are often used in stereo [17],
[7]: (1) absolute intensity difference (AD), (2) Rank, (3)
Census, (4) Normalized Cross Correlation (NCC), (5) Zero-
mean Normalized Cross Correlation (ZNCC), (6) Sobel, (7)
Laplacian of Gaussian (LoG).

AD measures the absolute intensity difference between the
reference (left) image I(x, y) and the target (right) image
I ′(x− d, y):

CAD(x, y, d) = |I(x, y)− I ′(x− d, y)|. (1)

Rank [18] transform is a non-parametric image transform
that models the structure of the neighbourhood of pixels
by exploiting the intensity variation. Eq. 2 represents the
Rank transform RT (x, y) of a pixel (x, y) inside a local
neighbourhood N(x, y) of size 7 × 7 and pixel-based DSI,
CRT (x, y, d) as:

RT (x, y) = |∀(x′, y′) ∈ N(x, y)|I(x′, y′) < I(x, y)|
CRT (x, y, d) = |RT (x, y)−RT ′(x− d, y)|. (2)

Census [18] transform models the structure of 7 × 7
neighbourhood of pixels that is denoted by k, as represented
in Eq. 3. Census is one of the most robust similarity measure
against radiometric differences between stereo pairs [7] and it
is calculated as:

CT (x, y)[k] =

{
1, iff I(xk, yk) > I(x, y)
0, otherwise,

µc(x, y, d)[k] =

{
1, iff CT (x, y)[k] = CT ′(x− d, y)[k]
0, otherwise,

CCT (x, y, d) =
∑
∀k

µc(x, y, d)[k]. (3)

The pixel-based DSI of Census transformed images calcu-
lated by using Hamming distance [18].

NCC is an intensity and patch based matching method
that is especially robust against Gaussian noise between the
matched patches. For simplified notation, let Ip and Ip−d

denote the pixels at (x, y) and x − d, y respectively. Eq. 4
presents the pixel-wise DSI calculation using NCC:

CNCC(p, d) =

∑
p′∈Np

Ip′I ′p′−d√ ∑
p′∈Np

I2p′
∑

p′∈Np
I

′2
p′−d

. (4)

ZNCC is similar to NCC whereas it provides more robust-
ness against gain and offset variation between matched image
patches [17]:

CZNCC(p, d) =

∑
p′∈Np

(Ip′ − Īp)(I ′p′−d − Ī ′p)√ ∑
p′∈Np

(Ip′ − Īp)2
∑

p′∈Np
(I ′p′−d − Ī ′p)2

.

For calculating NCC and ZNCC, we choose a patch size, |Np|
of 5× 5.

Sobel can suppress the noise in the intensity images. Let
Is(x, y) denote sobel filter of size 3× 3 response of image I
at pixel (x, y):

CSB(x, y, d) = |Is(x, y)− I ′s(x− d, y)|

LoG can suppress the noise and provide robustness against
offset in intensities. Similar to [7], we incorporated LoG kernel
with size 5× 5 and standard deviation of 1:

L(x, y) =
−1

πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2

ILoG(x, y) = I(x, y)⊗ L(x, y)

CLoG(x, y, d) = |ILoG(x, y)− I ′LoG(x− d, y)|.

AD, Rank, Census, Sobel and LoG are calculated pixel-
wise, however NCC and ZNCC are calculated over a neigh-
bourhood with intrinsic aggregation as depicted in Eq. 4 . In
order to compensate this difference, the pixelwise costs are
aggregated over 3×3 windows. All of the costs are normalized
to have values in [0, 1] before confidence estimation and fusion
in order to prevent range difference in between.

B. Confidence Measure

In order to fuse multiple similarity measures, the perfor-
mance of them should be measured. The confidence measures
give an indication of how sure the similarity measure is on a
particular location and can be used in fusion processeseqnarray.

18 confidence measures have been tested in [12]. LRD is
among the top performing confidence measures because of its
cross control over the left and right matching scores. Let d1, c1,
and c2 be the winner disparity, minimum, and second minimum
costs respectively, LRD confidence, S(x, y), can be calculated
as:



S(x, y) =
c2 − c1

|c1 −min
d′

(c′(x− d1, y, d′))|+ ε
, (5)

where c′(x − d1, y, d
′) denotes target to reference cost and

d′ represents the disparities from target to reference. As the
difference between c1 and min

d′
(c′(x− d1, y, d′)) decrease, the

confidence increases. We would expect that they would be
equal if there is no error and no occlusion between the two
images. Therefore, we add ε to the denominator to ensure we
do not obtain a zero denominator.

III. FUSION OF SIMILARITY MEASURES

We propose a consensus-based disparity voting algorithm
to fuse similarity measures, i, using LRD. Let (xn, yn) be
the pixels around a neighbourhood N(x, y) with size hw of a
pixel (x, y) and let dn be the winner disparity of (xn, yn), the
consensus, U(x, y, d), of the pixel can be found as:

µ(dn, d) =

{
1, dn = d
0, otherwise, (6)

U(x, y, d) =
∑
∀i

∑
(xn,yn)∈N(x,y)

Si(xn, yn)µ(dn, d).

U(x, y, d) denotes the consensus of candidate disparities
for the pixel (x, y) based on a weighted sum of the confidence
of every similarity measures, Si(xn, yn). The disparity that
has the highest consensus, d∗, is chosen in order to fuse the
similarity measures:

d∗ = argmax
d

(U(x, y, d)). (7)

For each similarity measure i, the DSI of a pixel with the
highest confidence having a disparity of d∗ in the neighbour-
hood of (x, y) is chosen as the new DSI of (x, y) which is
denoted as Ci(x, y, d). At the next step, the DSI of all of the
similarity measures Ci(x, y, d) are aggregated using weighted
average with respect to their confidence:

αi =
Si(x, y)∑
∀i
Si(x, y)

C(x, y, d) =
∑
∀i

αiCi(x, y, d), (8)

where, C(x, y, d) is the fused DSI measure for the pixel at
(x, y).

Described fusion strategy can fuse any similarity measure
and does not require any additional parameter except the
consensus window size, hw.

The proposed fusion strategy is light in terms of compu-
tational complexity. Let H , W , D and I denote the height,
width, range of disparities, and number of incorporated simi-
larity measures respectively. Measuring the confidence, LRD,
requires H×W×D computations. At the next step, calculating

the consensus around the neighbourhood of size hw requires
H ×W × hw × I computations. Since hw is chosen as 3× 3
in all of our experiments, consensus can be measured signifi-
cantly faster than the aggregation step. Finally, aggregating the
similarity measures requires H ×W × I computations which
is negligible since the total number of similarities, I , is small.

IV. EXPERIMENTS

To evaluate the performance of our algorithm, we per-
formed tests on the benchmark Middleburry dataset [1]. We
evaluate the performance by finding the percentage of disparity
estimations that has a difference more than one from the
ground truth disparity. We checked the appearance of errors
in different locations of the image such as non-occlusion
(nonocc), all pixels (all) and locations close to disparity discon-
tinuities (disc). Our algorithm has only one parameter which
is the consensus window size, hw. In all of our experiments,
we choose hw is equal to 3 × 3, so that we incorporate 8
neighbouring pixels when building the consensus.

We first explore the improvement that is obtained in the
initial DSI with the proposed fusion strategy compared to other
similarity measures and possible fusion strategies. We created
four different fusion strategies and tested our algorithm with
them using seven similarity measures as presented in Table I.

Most utilizes the DSI of the most confident similarity
measure for each location.

Average is the fusion strategy that takes the average of all
of the similarity measure’s costs.

Conf denotes the adaptive aggregation of DSI using the
weights that are obtained from the LRD confidence of the
similarity measures at each pixel.

Voting uses our consensus strategy but without confi-
dences. The confidence in the disparity voting is always equal
to 1.

Voting+Conf is based on our consensus strategy and
adaptive aggregation of the similarities using LRD confidence
measure.

The best performer in all of the dataset images and in all
regions is Voting+Conf which is also our proposed strategy.
Voting scenario with our consensus algorithm also performs
significantly better than the remaining algorithms and single
similarity measures. Adaptive strategy performs on par with
Average which highlights the importance of proposed consen-
sus algorithm. Directly choosing the highest confidence is the
worst performer of the fusion strategies. Census is the top
performer of the individual similarity measures. In contrast,
it is computationally expensive compared to other similarities.
NCC and ZNCC are the next top performers after Census.
The worst performer is the LoG. Computationally the cheapest
similarity is the AD which performs better than Sobel, LoG
and Rank in some images.

The most commonly used similarity metric is the AD and
most of the algorithms [11], [10] aim to fuse AD with different
similarities in an effective way. In our next experiment, we
fused AD with each of the other similarity measures and
compare our results with other algorithms. The results are
presented in Table II. AD with Census is the top performer



TABLE I. PERCENTAGE OF ERRONEOUS DISPARITY VALUES OF PROPOSED ALGORITHM WITH SEVEN DIFFERENT SIMILARITY MEASURES (SINGLE
SIM.) AND MULTIPLE SIMILARITIES (MULT. SIM.) WITH VARIOUS FUSION STRATEGIES.

Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Si
ng

le
Si

m
.

AD 21.5 23.2 21.6 27.2 28.4 30.7 35.7 42.2 41.3 37.4 42.2 40.5
Rank 29.8 31.2 34.0 23.8 30.8 33.6 36.1 42.5 43.9 23.0 31.5 36.0

Census 17.1 18.8 22.6 12.6 14.0 25.0 15.0 23.6 28.7 7.1 17.2 17.6
NCC 16.5 18.2 26.6 13.4 14.8 30.4 16.7 25.2 33.7 9.7 19.9 25.9

ZNCC 18.6 20.3 27.2 13.8 15.3 32.3 18.6 27.0 36.4 10.5 20.6 26.3
Sobel 23.4 25.0 32.2 27.7 28.9 36.5 40.7 46.7 48.3 28.6 36.4 41.9
LoG 38.4 39.7 43.8 41.5 42.4 49.9 54.0 38.6 60.7 40.7 47.2 53.5

M
ul

t.
Si

m
. Most 15.1 16.9 21.0 12.8 14.3 25.5 16.4 25.0 28.9 8.4 18.7 19.7

Average 15.5 17.3 22.8 12.6 14.1 27.8 15.3 24.1 28.9 7.7 18.1 19.4
Conf 14.7 16.6 21.1 12.6 14 25.8 15.7 24.4 28.6 7.8 18.3 19.1
Voting 12.3 14.2 19.0 9.3 10.8 23.5 12.4 21.3 25.9 5.7 16.1 15.4

Voting+Conf 11.7 13.6 17.9 8.3 9.7 22.8 12.3 21.2 25.3 5.3 15.8 14.1

TABLE II. PERCENTAGE OF ERRONEOUS DISPARITY VALUES OF AD SIMILARITY MEASURE AND ITS FUSION WITH OTHER SIMILARITY MEASURES.

Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

AD 21.5 23.2 21.6 27.2 28.4 30.7 35.7 42.2 41.3 37.4 42.2 40.5
AD+Rank 17.8 19.5 21.1 18.9 20.2 24.0 21.2 29.3 29.3 9.6 19.7 18.7

AD+Census 11.4 13.2 15.8 7.78 9.28 20.5 11.6 20.6 23.5 4.9 15.4 12.7
AD+NCC 13.8 15.5 16.7 18.0 19.2 26.6 22.3 30.0 32.7 20.0 28.7 26.2

AD+ZNCC 12.7 14.5 17.9 8.6 10.1 25.3 13.0 21.9 27.6 6.3 16.7 16.0
AD+Sobel 12.4 14.2 18.2 16.3 17.7 24.5 22.2 30.2 30.9 10.1 20.1 19.8
AD+LoG 14.9 16.7 18.6 19.5 20.8 28.7 25.3 32.9 33.7 17.1 26.3 25.6

among the others whereas fusion with LoG and Sobel also
provides significantly higher accuracy results compared to their
individual performances. The performance of each fusion is
higher than the performance of individual similarities except
the fusion with NCC. The accuracy of LRD on NCC is not
as high as its accuracy with other similarities. Therefore, the
accuracy of the fusion with NCC hampered significantly.

The results that are presented demonstrate the performance
of fusion over the initial DSI. In order to explore the perfor-
mance of our algorithm with aggregation, we perform two
experiments with AD-Census and AD-Sobel features. AD
and Census features are fused using exponential functions
by Mei et al. [11] (AD-Census) in order to obtain higher
accuracy using the function in Eq. 9.

CAC(x, y, d) = 2− e
−CAD
σ2
AD − e

−CCensus
σ2
Census (9)

Additionally, Klaus et al. [10] fused Gradient and AD
features linearly (Weighted Average) as given in Eq. 10.

CWA(x, y, d) = (1− α)CAD(x, y, d) + αCSB (10)

σAD and σCensus are given as 10 and 30 respectively.
However, optimum w for CWA(x, y, d) is not explicitly given
by Klaus et al. [10]. We tried different w values and exper-
imentally found that w equal to 0.9 gives the best results.
The results of our experiments for different-sized aggregation
windows are presented in Fig. 1. The results are averaged over
all of the four dataset images and errors are evaluated over all
pixels inside the images. In both of our experiments, AD is
the least accurate similarity metric in the aggregation. In the
fusion of AD with Census experiment in Fig. 1.a, our algorithm
performs the best especially for smaller aggregation windows.
AD-Census performs on par with the Census similarity for
smaller-sized windows. Yet, Census outperforms AD-Census

as the aggregation window size increases. In the fusion of AD
with Sobel similarity experiment, our proposed method is the
best performer for all sizes of aggregation windows. Sobel
similarity and Weighted Average [10] performs similarly in
terms of accuracy. Yet, for smaller sized windows, Weighted
Average is slightly better than Sobel and significantly better
than AD similarities. In all of the experiments, the accuracy
is saturated to a constant value when the aggregation window
size approach to its largest size (13 × 13). The reason for
this is as the aggregation size increase, the disparity at the
discontinuities are smoothed as well as the disparities at
homogeneous regions as depicted in Fig. 1.c-d and this causes
errors. In general, aggregation window size is chosen between
3×3 and 9×9 to avoid errors at discontinuities. Our algorithm
can achieve the highest possible accuracy even at the smaller
window sizes.

In order to explore the effect of consensus region size,
hw, we perform an experiment with different hw and show
the results in Fig. 2. As hw increases, the resulting accuracy
increases. Since the computational complexity also increases
with hw, larger values requires more computations. In all of
our experiments, we choose hw as 3× 3.

The perceptual results of our fusion strategy and two
of the single similarity measures are presented in Fig. 2
(AD and LoG) and 4 (AD and Census) respectively. The
locations where significant improvements are achieved are
surrounded with red. Even without any aggregation, our al-
gorithm provides high accuracy at both uniform color regions
and disparity discontinuity locations. Fig. 3 shows the result
for the fusion of AD and LoG features. The LoG similarity
is computationally cheaper than Census similarity. Yet, both
quantitative and perceptual results show that the difference
between their fusion with AD similarity is not as high as their
individual performances. Therefore, our algorithm can provide
high accuracy with higher frame rates compared to using single
and computationally expensive measures.



Fig. 1. The proposed algorithm performance with respect to (a) AD and Census similarity measures and AD-Census [11], (b) AD and Sobel similarity measures
and Weighted Average [10]. (c-d) The results with Census (c) and Sobel (d) for aggregation size indicated with arrows. Red and Green indicate the error and
improvement as the aggregation window increase respectively.

Fig. 2. The performance of our algorithm with respect to different consensus
region sizes, hw

V. CONCLUSION

In this paper, we presented a novel consensus-based sim-
ilarity fusion algorithm using stereo confidences. To our
knowledge, it is the only algorithm in stereo literature that
does not require additional parameters and can be applied
to fuse any number of similarity measures. The experiments

show significant accuracy increase compared to individual
similarity performances and other possible fusion strategies.
The proposed algorithm can be further generalized for utilizing
in multi-view disparity estimation algorithms.

Fig. 3. AD and LoG fusion result on Cones dataset: (a) Color image, (b)
ground truth disparity, (c) AD similarity, (d) LoG similarity, (e) proposed
algorithm results (AD+LoG) respectively. Some of the significant differences
are marked in red.
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