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Abstract—The goal of model-based object trackers is to
automatically detect and track specific objects, such as cars
or pedestrians. To solve this problem, many modern trackers
train a detector on a collection of annotated object images and
use the trained detector in a tracking-by-detection framework.
A major limitation of such an approach is that a single,
generic detector is used to track specific objects; the additional
information on the visual appearance of the particular object
under consideration that is available after the initial detection
is ignored. This paper proposes an approach that addresses this
limitation by adapting the appearance model for each particular
object using online learning techniques. We demonstrate the
effectiveness of the approach in a state-of-the-art object detector
based on deformable template models, the parameters of which
are adapted online using an online structured SVM. We further
improve the performance of the resulting model-based trackers
by online learning a prior distribution over the size of objects.
The experimental evaluation of our tracker demonstrates its
effectiveness in pedestrian tracking.

I. INTRODUCTION

Model-based object tracking is a seminal problem in com-
puter vision with a wide range of applications. For instance,
in applications such as automatic surveillance and driving
assistance, it is essential to detect and track objects like
faces, pedestrians and cars. Most modern model-based trackers
train a detector on a collection of annotated object images
(e.g., faces [1], pedestrians [2], [3], [4], [5], cars [6], and
rigid objects [7]) and use the trained detector in a tracking-
by-detection framework. The advantage of these trackers is
that they are very robust since their object appearance model
learned to cope with large variances of data (e.g., with different
view-point and partial occlusion). However, a major limitation
of existing tracking-by-detection approaches is that a single,
generic detector is used to track specific objects, whereas
additional information on the visual appearance of the specific
object under consideration is ignored.

In this paper, we present an online-learning approach that
adapts the appearance model of the detector to the specific
object that is tracked. Our approach combines on recent
advances from model-free tracking [8], [9], [10], [11], [12],
[13] with state-of-the-art object detection frameworks (e.g.,
[6]). Specifically, we develop an online-learning algorithm
that addresses the limitations of model-based trackers by
updating the parameters of a deformable part model in an
online structured SVM framework. The online updates adapt
the appearance model to more accurately describe the target
object under consideration. We coin the resulting tracker
the online deformable-part-based model (ODPM) tracker. We
further improve the performance of the ODPM tracker by
online learning a prior distribution over the size of objects.

This paper proposes an online deformable-part-based

model (ODPM) that addresses the limitation of model-based
trackers by adapting the appearance model for each particu-
lar object using online learning techniques. We demonstrate
the effectiveness of the approach in a state-of-the-art object
detector based on deformable-part-based models (DPM) [6],
the parameters of which are adapted online using an online
structured SVM [13]. We further improve the performance of
the resulting model-based trackers by online learning a prior
distribution over the locations and the size of objects, thereby
substantially reducing the number of false positives that our
detector generates [14]. We demonstrate the effectiveness of
our tracker empirically in a pedestrian-tracking task [15].

II. RELATED WORK

The work described in this paper combines ideas from
object detection and model-free tracking. We briefly introduce
related work in both these areas below.

Despite the recent popularity of convolutional networks for
object detection [16], [17], [18], [19], many popular detectors
still rely on hand-crafted gradient features such as histograms
of oriented gradients (HOG) features [20]. For instance, many
deformable part models [6] and grammar models [21] gen-
erally rely on a combination of linear models and HOG
features. The most prominent approach in this area [6] uses
a star-structured part-based model defined by a “root” filter
(analogous to the Dalal-Triggs filter) plus a set of part filters
and deformation models. The score of one of star models at
a particular position and scale within an image is the score
of the root filter at the given location plus the sum over parts
of the maximum, over placements of that part, of the part
filter score at its location minus a deformation cost measuring
the deviation of the part from its ideal location relative to
the root. Both root and part filter scores are defined by the
dot product between a filter (a set of weights) and a sub-
window of a feature pyramid computed from the input image.
Similar deformable part models have been used, among others,
in pedestrian detection and tracking [22], [23] and in human
body pose estimation [24], [25], [26].

In model-free tracking, most recent approaches employ an
online-learning approach in order to learn better models of the
visual appearance of the target object and to adapt that model
to appearance changes over time. In general, these approaches
assume that the track in a frame can be used as a positive
training example for the appearance models. Many prior stud-
ies in model-free tracking focus on exploring different feature
representations for the target object, including feature repre-
sentations based on points [27], [28], [29], contours [30], [31],
[32], integral histograms [33], subspace learning [34], sparse
representations [35], and local binary patterns [12]. Recent
work also focuses on developing new learning approaches
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Flowchart of the ODPM algorithm.

to better distinguish the target object from the background.
In particular, previous studies have investigated approaches
based on boosting [9], [36], random forests [12], multiple
instance learning [8], and structured output learning to predict
object transformations [10]. Recent work also focuses on
learning motion priors to obtain better trajectory association;
for instance, [15] learns a context-conditioned motion prior on
sport players (such as basketball and hockey players).

Some recent studies propose to perform model-free track-
ing using deformable part models that are trained online [13].
The appearance model is similar to that of [6] in this work,
but the difference is that its parameters are trained in an online
structured SVM framework [37]. Our work is motivated by the
success of [13], which paves the way for adapting state-of-the-
art object detectors [6] to the specific objects that are being
tracked via online learning.

III. METHODOLOGY

The basis of our model-based tracker is formed by a
deformable part model (DPM) that employs histograms-of-
oriented gradient (HOG) features and that is trained using a
(latent) structured SVM [6]. We adapt the parameters of this
DPM to the particular object under consideration via online
learning. A general overview of the resulting tracker is shown
in Fig. 1. Each element of the tracker described in detail in
the following subsections.

A. Deformable Part-Based Model

Deformable part-based models (DPMs) consist of two main
submodels: (1) a model for the visual appearance of each part
and (2) a geometric model that captures spatial relationships
between the parts. The parameters of DPMs are generally
learned using maximum likelihood estimation. The basis of
our tracker is the DPM introduced in [6], which models the
visual appearance of the parts using linear models trained on
HOG features. Specifically, the model employs a global root
“part” that models the entire object using coarse HOG features,
and a number of smaller parts for which HOG features are
measured on a finer scale. The geometric model comprises
a star-structure model that represents the spatial relationships
between each part and the root part. As the visual appearance
of objects might be different depending on the viewpoint, an
object category is represented by a mixture of DPMs, e.g., a
typical pedestrian detector is a mixture of two DPMs (one for
a left side view and one for a right side view).

In the DPM, each part € V' (with V representing the set of
all parts) is indicated by a box B; = {x;,w;, h;} with center
location x; = (x4, y;), width w;, and height h;. We denote the
HOG features extracted from a box B; in image I by ¢(I; B;).
Subsequently, we define a star graph G=(V, E) over all parts
and root ¢ € V with edges j € I/ between the parts and root
part. The edges in the graph can be viewed as springs that
represent spatial constraints between the parts and the root
part. The score of a configuration C = {By,..., By} of
each model as the sum of two terms: (1) an appearance score
that sums the similarities between the observed image features
and the classifier weights for all parts, and (2) a deformation
penalty that measures how much a configuration compresses or
stretches the springs between the parts and root. Specifically,
the score of a configuration C' is defined as:
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where the deformation cost ¢gq (dx;,dy;) for the j-th part
is defined to be the squared distance between its actual
position and its anchor position relative to the root, the
parameters w; represent linear weights on the HOG features
for part 7, A; is the tradeoff parameter between appearance
and deformation, and the set of all parameters is denoted
by © = {wi,..., Wy, A1,...,A\g}. The parameters © is
learned using a latent structured support vector machine, as
described in [6].

Given the parameters of the model, finding the most likely
object configuration (for a single component of the mixture
model) amounts to maximizing Eqn. (1) over all possible
configurations C. This maximization is intractable in general
because it requires searching over exponentially many con-
figurations, but for star-structured graphs (G, a combination
of dynamic programming and min-convolutions can be used
to perform the maximization in linear time [6]. The final
most likely object configuration is to maximize the score over
all mixture component models M, since each component of
the model is conditionally independent (given the mixture
component assignment).

B. Online adaptation

The main contribution of this paper is an algorithm that
online updates the parameters of the DPM in order to better
model the visual appearance of the object that is being tracked.
After observing an image I, we detect or track the object under
consideration by finding the most likely object configuration
C* by maximizing Eqn. (1). The key difference between
detection and tracking is that for tracking, we incorporate a
Gaussian location prior centered around the previous location
of the target object. (In both detection and tracking, we also
use additional size priors that are learned online further
details of these priors are given in the next subsection.)

Subsequently, we assume that we have correctly localized
the target object. This implies that we can use the optimal
object configuration C* as a positive example in online learn-
ing. As before, we employ a structured SVM formulation in
order to perform the parameter update. In other words, we



would like to update the parameters of the DPM in such a
way that the score s(C*;1,©) for the optimal configuration
C* is larger than any other configuration C' by at least a
margin A(C, C). Herein, A is a task-loss function that equals
Zero iff C = C. The task loss is assumed to be non-negative,
VC # C: A(C,C) > 0, and upper bounded by a constant (),
JQVC : maxs A(C,C) < Q. To adapt our model in such a
way that it assigns a higher score to the positive locations
and lower scores to other locations, we update the model
parameters © by taking a gradient step in the direction of
the structured SVM loss function [38]. Herein, the structured
SVM loss / is defined as the maximum violation of the task
loss by configuration C' (as described above):

0(0;1,C) = max |s(C;1,0) — s(C;L,0) + A(C,0)| . (2)
¢
The structured SVM loss function does not contain quadratic
terms, but it is the maximum of a set of affine functions. As a
result, the structured SVM loss in Eqn. (2) is a convex function
in the parameters ©.

We assume that the graph structure for the target object
does not change much over time, which is why we only adapt
the appearance parameters wi, ..., wy| of the DPM. Specif-
ically, we use a passive-aggressive update of these parameters
[39]. The passive-aggressive algorithm sets the step size in
such a way as to substantially decrease the loss, while ensuring
that the parameter update is not too large. In particular, it uses
the following parameter update:
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where K € (0,400) is a hyperparameter that controls the
“aggressiveness” of the parameter update. In our experiment,
we choose K = 1. Since each object detector may consists
of several component models, we only update the component
model with highest score each time. By using such a simple
online learning algorithm, the appearance of the whole per-
son and more detailed sub-parts of person is learned during
tracking. The updated model for a certain person will be
more discriminative and more adaptive to this person’s visual
appearance.

We build and update an separate model for each detection
by tailoring the corresponding DPMs as described above. To
prevent our tracker from drifting, we use some checks that
aim to confirm that every detection is correct. Specifically, we
only perform a parameter update if the detections of both the
base detector and the adapted detector agree on a particular
bounding box. Herein, we assume that both detectors agree
when the overlap of the two bounding boxes they produce is
larger than 50%. Moreover, we stop tracking an object when
the base detector cannot detect the target object anymore for
more than five frames.

C. Size Prior

Whilst the online learning of our DPMs reduces the number
of errors during tracking, it does not eliminate false positives
in the initial detection of target objects. Since our approach
may adapt the DPM parameters to better model such a false
positive, it is essential to remove false positive detections as

soon as possible. Generally, false positive detections appear at
locations which have a similar visual appearance as the target
object. However, the size of false positive detections is often
not consistent with the size of other target objects in nearby
locations. Moreover, false positives also occur quite often at
locations that are unlikely a prior. For instance, a bottle on
the table may sometimes be recognized as a pedestrian. We
propose a simple approach that eliminates false positives by
noting that the bottle has a unlikely size and location when
considering its environment. Specifically, we learn a prior
distribution over the sizes of target objects in online manner.

We initialize the prior to be a uniform distribution over
sizes at all locations, so we accept all detections in the first
frames of a video. Because the size of objects generally
increases when objects are closer to the camera, we opt
to not make the prior distribution over sizes dependent on
the z-coordinate of the object location, but only on the y-
location. This assumes that objects that are located on the
same horizontal line generally do have a similar size. We use
a Gaussian distribution p(sly, ty, 05) to model the prior over
object size s for each y-location. The variance o of p(s) is
set to a predefined fixed value. The mean g, is initially set
according to the average detection size of the same horizontal
line as observed in the first ¢ frames, and it is updated with
new detections overtime using online averaging. Since we do
not generally have observed sufficient detections at every y-
location, we use linear interpolation based on the available
detections to set all values of .

IV. EXPERIMENT

We perform experiments with our online DPM tracker in
which we compare its performance with that of a DPM that is
not updated during tracking. In both cases, the initial detection
is made using a Felzenszwalb object detector [6] that was
trained on the pedestrian class of the Pascal VOC 2007 chal-
lenge. The ODPM tracker is initialized using the parameters of
that off-the-shelf detector; after this initialization, the ODPM
parameters are updated using the procedure described above.
Following [40], we measure two characteristics of our tracker:
(1) the miss rate that is defined as the rate of objects that are
missed by the tracker, where we define a miss when there is no
detection that has more than 50% overlap with a ground-truth
bounding box; and (2) the false positive rate, where a false
positive is an detection that has less than 50% overlap with a
ground-truth bounding box. To compute these two measures,
we solve a simple assignment problem between the ground-
truth annotations and the detections by the (O)DPM tracker.

To evaluate the performance of the ODPM track, we run
experiments on five videos from ETH pedestrian database [41]:
Sunny day, Bahnhof, Jelmoli, Crossing, and Linthescher. The
results of these experiment are shown in Fig. 2. Specifically,
the figure presents the miss rate as a function of the false
positive rate DPM and ODPM on all five videos (lower curves
indicate better performance). The results presented in the figure
show that ODPM outperforms the baseline DPM detector
on average, which supports our hypothesis that tailoring the
appearance model of an object detector to a particular object of
interest may indeed improve tracker performance. For videos
like Sunny day and Crossing, there are less pedestrian-like
patches in the background and most pedestrians are big enough
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Fig. 2. Miss rate as a function of the false positive rate of DPM and ODPM on all five videos (lower curves indicate better performance). Figure best viewed

in color.

to detect for almost every frame, as a result of which we may
be observing a ceiling effect: the baseline DPM tracker already
has a very good performance, as a result of which the improve-
ment of the ODPM tracker on these videos is insignificant. By
contrast, on challenging videos like Bahnhof and Linthescher,
in which the size and appearance variation of pedestrians are
very large (due to occlusion, cluttered background, etc.), the
baseline DPM tracker produces a substantial amount of false
positive detections and false negatives. On these challenging
videos, the ODPM tracker substantially outperforms the base-
line because it adapts the appearance models to individual
pedestrians, as a result of which it handles low illumination
and partial occlusion problems better. In addition, the ODPM
tracker benefits from the size prior that we learn online, which
facilitates the removal of false positives with erroneous sizes.

Fig. 3 shows some of the tracking results of ODPM
(in red) and DPM (in blue) on the Sunny day, Bahnhof,
Jelmoli, Crossing, and Linthescher videos. Please note that in
some visualizations, some blue rectangles from the images are
partially covered by red rectangles due to the order of plotting
the rectangles. The figure illustrates the strong performance
of the ODPM tracker, in particular, its ability to remove false
positives based on the size prior (such as detections in the sky
or that are too big). The figure also illustrates why ODPM
tracking does not improve over DPM tracking for simple
videos like Sunny day: DPM already does a good job on these
videos. A disadvantage of the proposed ODPM is that we need
to compute the detection score of all the object-specific models
in every scale and location of the HOG pyramid, which is time-
consuming. To obtain an efficient tracker nonetheless, one may
use ODPM in combination with an efficient searching method
such as selective search [42], feature ignoring tracking [43],
or cascaded models based on Bing features [44]. When such
approaches are employed, we expect that the ODPM tracker

can still operate in real-time.

V. CONCLUSION

We have proposed an online adaptation mechanism for
deformable part-based models in order to improve their per-
formance when used for tracking. Specifically, our algorithm
tailors the generic object appearance model of off-the-shelf
object detectors to specific instances of that object. We have
shown empirically that tracking by tailoring object detectors
online decrease the miss rate of these detectors, in particular,
when we learn object size priors in an online manner to reduce
the number of false positive detections. In future work, we aim
to investigate specific model-based object tracking problems in
domains such as activity recognition and consumer science.
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