
© Institute of Materials, Minerals and Mining 2009 DOI 10.1179/174327909X441108
Published by Maney on behalf of the Institute

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 34 No. 2–3, 2009, 189–205

Digital Support for Archaeology
Paul Boon, Laurens van der Maaten, Hans Paijmans 
and Eric Postma
Tilburg Centre for Creative Computing, Tilburg University, 
The Netherlands

Guus Lange
Dutch State Service for Archaeology, Built Monuments, and Cultural 
Landscape, Amersfoort, The Netherlands

We describe an interdisciplinary approach in which computer scientists 
develop techniques to support archaeology. In the Reading Images for the 
Cultural Heritage (RICH) project, a variety of methods have been developed 
to support archaeologists in the visualization, categorization, and charac-
terization of archaeological objects, such as medieval glass, coins, ceramics, 
and seeds. The methods are based on image processing and machine 
learning algorithms that are tailored to the task at hand. We describe 
the algorithms and illustrate their application on archaeological datasets. 
The virtues and pitfalls of the interdisciplinary approach to archaeology are 
discussed. 
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Introduction

The ultimate task of specialists in archaeological studies is to assign meaning 
to new discoveries. The interpretation of new discoveries is possible because 
objects and features are thought to resemble each other more when they are 
closely related to each other in a space�time window. The newly discovered 
objects and features and their contexts are thereto compared with those found 
earlier and described in the literature. Paramount is the accessibility to this 
collective memory or knowledge base, which is composed of the relevant 
literature and databases.

The accessibility of data, information, and knowledge is a major issue in 
archaeology for two main reasons. First, the accessibility to information is 
limited because of the dispersion of archaeological expertise over a multitude 
of private archaeological firms and institutes. Clearly, traditional manners of 
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communication are stretched to their limits. Second, the implicit nature of 
much of the expert knowledge (so-called tacit knowledge) makes it hard to 
translate into formalized descriptions such as if-then rules, which are 
amenable to processing by a computer. Each excavation site is unique in 
the sense that the geographical context differs from site to site as are the 
diversity and constellations of objects encountered. As a result of the 
context-dependency of archaeological finds and the fact that observations in 
the field cannot be repeated, the scientific discipline of archaeology is highly 
dependent on individualistic observations and judgements. The main 
challenge is to incorporate the individual, implicit knowledge of 
archaeologists into objective and transparent descriptions, taxonomies, or 
theories, without losing specific contextual information. Intelligent digital 
techniques may support archaeologists in meeting the challenge.

The successful implementation of intelligent digital techniques in the 
archaeological domain requires close interaction between computer scientists 
and archaeological experts. This interaction was facilitated by The 
Netherlands Organisation for Scientific Research (NWO) within the 
Continuous Access to the Cultural Heritage (CATCH) programme. The 
Reading Images for the Cultural Heritage (RICH) project is part of CATCH, 
and aims at meeting the challenge by developing intelligent tools to support 
archaeologists. Within the RICH project, the emphasis is on the use of 
image processing and machine learning techniques for reasons that will be 
explained in the following section. In addition, machine learning tools for text 
mining and information retrieval are developed in close conjunction with 
another CATCH project called Mining for Information in Text from the 
Cultural Heritage (MITCH), which is described elsewhere in this issue. The 
numerous cooperations between experts from various domains have led to 
the development of a variety of products and ideas, which makes the RICH 
project a good example of how the interdisciplinary cooperation of domain 
experts can foster innovation. In this contribution, we describe the tools that 
were developed within the RICH project, and we reflect on the virtues of the 
cross-fertilization between the archaeological and the computer science 
domain.

The outline of the contribution is as follows. We describe the institutional 
embedding of the RICH research. In addition, we provide an outline of the 
three main subprojects executed: (1) the digitization of ceramic fabric, (2) the 
development of techniques for the automatic classification and visualization 
of archaeological objects (i.e., coins and ceramic profiles), and (3) the develop-
ment of software for information retrieval from archaeological reports. These 
three subprojects are described in detail in the subsequent sections and finally, 
we discuss the virtues of the interdisciplinary cooperation within the RICH 
project.

Embedding of the project

The RICH project is executed on-site at the Dutch National Service for 
Archaeology, Cultural Landscape and Built Monuments (RACM) in 
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Amersfoort, The Netherlands. The RACM has a coordinating role in 
protecting the national heritage in the physical public space.

The RICH project is integrated with existing initiatives of the RACM that 
provide the infrastructure for information exchange and the safeguarding of 
knowledge: the Knowledge Infrastructure for Cultural History (KiCH) and 
the National Reference Collection (NRc). KiCH is basically a GIS-based1 web 
service for professional end-users to provide access to dispersed cultural 
historical information sources provided by a growing number of different 
governmental institutions and other partners. The NRc is an information 
infrastructure, primarily for specialists, to exchange knowledge on, and define 
standard terminologies for, cultural heritage sub domains. The NRc is being 
developed with the ultimate aim to enhance the quality, transparency, 
sustainable accessibility and reusability of the shared knowledge base. The 
principal contents of the NRc are richly illustrated standard vocabularies and 
thesauri on material culture categories (Lange 2004; Lange and Drenth 2006). 
This information structure is congruent with the traditional archaeological 
method of using archetypes put in a chronological (chronotypology) or other 
order (type series) as a measure for all other objects to be positioned along 
and giving them meaningful labels (Adams and Adams 1991). The NRc 
serves as the interface allowing meaningful communication between authors 
and users of the information (persons or computers), who may operate 
geographical and chronological separated spaces. KiCH and NRc are 
complementary and may evolve towards a single overarching project.

The results of the RICH project are essential contributions in the 
development towards the realization of the NRc and the reuse of information. 
RICH provides archaeologists, and in their wake other cultural heritage 
specialists, with digital tools to access, analyse, and enrich the shared 
knowledgebase by increasing the efficacy and efficiency of access, reinforcing 
its infrastructure, and improving the quality and consistency of the 
information stored.

The RICH project emphasizes the development of software based on image 
processing and machine learning algorithms. Both types of algorithms are 
well suited to meet the challenge of archaeology for the following two 
reasons. First, the emphasis on image processing in the RICH project agrees 
well with the predominance of visual analysis in the field. Second, the tacit 
nature of archaeological knowledge can only be acquired by a computer 
using computerized learning methods that learn from examples, rather than 
by explicit descriptions in terms of if-then statements. More concretely, an 
archaeological expert will have considerable difficulty in making explicit all 
variables that the expert takes into account to assign a certain object to a 
certain class, whereas assigning the class label to a find is straightforward. 
Machine learning algorithms do not require explicit descriptions and can 
learn a model by means of labelled, partially labelled, or even unlabelled 
examples. Hence, the use of machine learning seems highly appropriate for 
the archaeological domain.

Three main subprojects that illustrate the contribution of RICH and the use 
of image processing and machine learning are: (1) the digitization of ceramic 
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fabric, (2) the development of techniques for the automatic classification and 
visualization of archaeological objects, and (3) the development of software 
for information retrieval from archaeological reports. The digitization 
subproject illustrates the importance of interdisciplinary collaboration. The 
nature of ceramic fabric poses special requirements on its digitization. The 
digital techniques for the subproject on classification and visualization of 
archaeological objects were motivated by the desire of archaeologists to 
classify objects in a consistent manner and, more importantly, to visually 
assess the variables underlying the classification. Finally, the development of 
software for the subproject on semi-automatic information retrieval from 
archaeological reports was motivated by the desire to come to grips with the 
heterogeneity of descriptions in the documents in the Dutch archaeological 
domain. In the following three sections, each of the subprojects is discussed 
in detail.

Digitization of ceramic fabric

Fragments of ceramic artefacts are commonly found at archaeological 
excavations. The analysis of their structure and composition is of pivotal 
importance to reconstructing the production methods and distribution of the 
pottery in the past. In particular, the visual analysis of fractured surfaces 
reveals important information on the source and composition of the fragment. 
Typically, the fragments are composed of a variety of tempering materials in 
addition to clay in order to facilitate the production process or to enhance the 
quality of the final ceramic product. The combination of particular types of 
material gives an indication of age and origin. Figure 1 shows an illustration 
of a fresh break of a sherd with tempering material clearly visible. The 
analysis of fractured sherds can be performed even if the fragments are too 
small to reveal the shape of the original pottery (the analysis of shape profiles 
is discussed in Ceramic profiles section).

The aim of the digitization subproject is to collect digital images of 
fractures to realise a large database to support research and evaluation. We 
collaborated with fabrics expert Gert van Oortmerssen of the Laboratory for 
Conservation & Material Studies of the Groningen Institute of Archaeology, 
who provided us with ceramic material and his expert knowledge. The 
interdisciplinary collaboration resulted in a non-standard digitization 
procedure that relies on a three-dimensional scanner, rather than on a two-
dimensional scanner (e.g., a single photograph). In their visual examination of 
a fractured surface, archaeologists exploit the three-dimensional surface 
structure by moving the sherd subtly. The movements reveal the intricate 
physical texture of the fracture to the observer. Standard digitization of a 
fracture as a two-dimensional image would hamper the examination because 
important visual cues, such as transparency, lustre, and roughness would be 
lost. The interdisciplinary cooperation prompted us to develop a new method 
for the three-dimensional capture of fractured surfaces, rather than elaborating 
on the traditional two-dimensional photographs or scans. The basic idea of 
our method is to digitally represent a surface by means of a sequence of 
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images that, when shown in succession, forms a movie showing the movement 
of the surface, closely following the examination process in real life.

In our image sequences, we decided to define a single axis of rotation, 
which can be played using the browser�s standard support for movie playing. 
The suggestion of reality is further improved by allowing an online viewer to 
virtually rotate the object by dragging with the mouse on the image. 
Examples of such movies can be seen at the RICH website.2 Although other 
techniques for digitizing fabric could be used, the rotation sequences are 
preferable, because the images are photorealistic by definition and already 
useful without any filtering or interpolation.

In our digitization subproject, we furthered our interdisciplinary 
cooperation with Sylvia Pont of the Physics of Man, Human Perception group 
of Utrecht University. She suggested to employ the Bidirectional Texture 
Function (BTF) to quantify the surface of the fracture in our digital analyses 
(Dana et al. 1999). The BTF describes how the observed texture changes as a 
function of the angle of view and the angle of illumination owing to effects 
of shading, shadowing, occlusions and inter-reflections. Our shared interest 
in developing equipment for measuring the BTF gave rise to the joint 

fi gure 1 Fresh fracture of a ceramic fragment revealing the fabric of the sherd.
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development of the digitization system in which both rotation and image 
acquisition are computer-controlled. This enables keeping constant the 
illumination and viewpoint for the digitization of all fragments in the 
collection. The results obtained with an early prototype of the system 
yielded encouraging results (Boon et al. 2007). Recently, we completed the 
development of the BTF acquisition device. Figure 2 shows the device during 
acquisition of a sherd. The fabric movies are acquired by keeping the camera 
and lamp fixed while the object is rotated. Two arcs are attached to the 
apparatus; one for the camera and one for holding the lamp. The arc holding 
the lamp can also be rotated around the central rotation platform. Combina-
tions of different camera and lamp positions allow for the acquisition of the 
BTF, which in turn provides a quantitative representation of the perceptual 
properties of the fractured surface. The acquisition system will be used to 
digitize fabric reference collections. When sufficient data are acquired, we will 
apply machine learning techniques (as described in the next section) to the 
digitized fragments. The techniques and procedures we have developed for 
acquisition and visualization of ceramic fabric can also be applied to other 
archaeological materials and objects, such as flint and coins. Clearly, the 
interdisciplinary collaboration was immaterial to the successful completion of 
the digitization subproject.

Automatic classification and visualization

Within the RICH project, we developed a wide variety of classification and 
visualization techniques based on image-recognition and machine-learning 
algorithms. In this section, we describe our techniques for the classification of 
coins and ceramic profiles. For the automatic classification of coins, the main 
result is expressed numerically as a classification performance on unseen 
coins. The sometimes ambiguous results obtained were found to be due to 
inconsistent labelling and the lack formal descriptions of the critical features 
of the medieval coins under consideration. Extensive interdisciplinary 
discussions with archaeologists and coin experts revealed that ground truth is 
hard to find in almost all archaeological data. This led to the realization that 
the standard methodology of machine learning, in which a perfectly labelled 
training set is used for creating a model from the data, does not apply to 
most of the archaeological domain. We therefore adopted an alternative 
machine-learning methodology in which the results were visualized, rather 
than quantified, so that archaeological experts could employ our tools in a 
semi-automatic manner. As an illustration, we describe the visualization of 
the similarity structure of profiles. The next two subsections describe the 
classification (coins) and visualization (profiles) approaches and their results.

Coin recognition
The aim of coin recognition is to identify the properties (such as currency or 
authority) of the depicted coin, or to find coins with a similar stamp in a 
reference collection of coins. The aim of a coin recognition system is to 
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compute a similarity measure between coins that is invariant to rotations of 
the coins, because the orientation of the coin on the photograph is unknown 
beforehand. The similarity measure can be used in classification or retrieval 
tasks using a nearest neighbour scheme.

fi gure 2 The acquisition device rotating a Roman potshard.
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The coin recognition system

In coin recognition, most visual information that is of relevance to the class of 
the coin is contained in the stamp of the coin. From a computer vision 
perspective, the contours of the stamp of a coin are characterized by sudden 
changes in the pixel values in the coin image (so-called edges). These edges 
can be localized by inspection of the derivative or gradient of the coin image. 
The coin image gradient has a magnitude, which measures the strength of the 
change in pixel values, and an orientation, which measures the direction of the 
change in pixel values. As a result of the low contrast in many coin images, 
the gradient magnitude is often very noisy, and thus not very suitable for 
such an analysis. In contrast, gradient orientations are not sensitive to low 
contrast in coin images (Reisert et al. 2007). The robustness of gradient 
orientations to low-contrast images led us to use it as a basis for our coin 
recognition system.

Our approach consisted of three stages, which are described in detail by 
van der Maaten and Boon (2006). In the first stage, the gradient orientations 
of the coin images are computed. For each location in the coin, the gradient 
orientation represents the direction of change of pixel values. By definition, 
the gradient orientation at a location on the contour of the coin stamp is at 
right angles to the direction of the contour. In the second stage, the pairwise 
similarities between gradient orientation images are computed. The similarity 
between two gradient orientation images is computed by counting the 
number of identical orientations in the two gradient orientation images. The 
resulting count is an indication for the similarity of the corresponding two 
coin stamps. In the third stage, classification of the coins is performed based 
on the pairwise similarities. The classification of a coin face is performed 
using a 1-nearest neighbour classifier (see, e.g., Duda et al. 2001) that uses the 
similarity measure developed in the previous stage. The reason for the use of 
a 1-nearest neighbour classifier is that, in many historical coin datasets, the 
number of duplicate coins is limited. Generally, images of both coin faces are 
available, and thus a combination of the classification of the two coins is 
required. If the two coin faces of a coin are classified differently, we reject 
both classifications and classify the coin as unknown. Note that the pairwise 
similarities can also be used as input into a visualization technique such as 
the technique discussed in the Visualization section.

Coin recognition experiments

In the evaluation of the performance of our approach to coin recognition, we 
performed experiments on two datasets: (1) a modern coin dataset and (2) a 
historical coin dataset. We describe the set-up of our experiments and their 
results separately below.

The modern coin dataset contains approximately 30,000 coin images, 
corresponding to 15,000 coins.3 The dataset is divided into a fixed training set 
of 20,000 coins, and a fixed test set of 10,000 coins. The training set contains 
2268 different coin faces, corresponding to 692 coin classes. The test set 
contains 4 per cent coins that are not in the training set, and that should be 
classified as unknown.
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The archaeological coin dataset is a dataset that was provided by Arent Pol 
of the Dutch Money and Bank Museum. The dataset contains 4822 coins from 
the Merovingen dynasty that were produced and used between the fifth and 
the eighth century in Northern Europe.

Classification of archaeological coins is more difficult than the classification 
of modern coins, for instance, because the variation in coins from the same 
origin (stamp) may be larger than variations between specimen from different 
origin. Moreover, obtaining ground truth for archaeological coin data is 
generally impossible as we lack the knowledge of the composition of the 
original parent population. The class labels of the historical coins are only 
available for a small portion of the coins. In addition, the class labels are 
known to contain errors. Hence, we decided not to use the labelling of the 
coins in our experiments.

For our experiments on the archaeological coin dataset, we selected 50 
historical coins of which we know that the dataset contains one or more coins 
with similar coin faces. A larger test set would have been desirable, but 
cannot be constructed because the number of duplicate coins in the archaeo-
logical coin dataset is limited. The performance of the system is evaluated 
by human comparison of the 50 coins with the best matching coins that 
were identified by the system. The human subjects evaluate whether a query 
coin and the best matching prototype as identified by the system (i.e., the 
query-match pair) have perceptually similar coin faces. We report on the 
number of times in which the human subjects evaluate a query-match pair 
as perceptually similar.

Results

In Table 1, we present the results of the evaluation of our approach to coin 
classification on the modern coin dataset. We present the results of template 
matching based on gradient magnitude images. The results in Table 1 reveal 
that our approach is capable of correctly classifying a large percentage of the 
coins, while only making a low percentage of misclassifications (taking into 
account that 4 per cent of the coins in the test set were not in the training 
set).

In Table 2, we present the results of our experiments on the archaeological 
coin dataset. The table shows the percentage of query-match pairs that the 
human subjects evaluated as perceptually similar. In addition, we report the 
corresponding standard deviation, as well as the minimum and maximum 
values. Figure 3 shows 10 archaeological coin images and their corresponding 
best matches as identified by the system. In Figure 3, the upper coins are the 
query coins and the lower coins the best matches as identified by the system. 
The upper two rows depict five correct query-match pairs, whereas the lower 
two rows depict five incorrect query-match pairs. The results reveal that our 
approach is to some extent capable of dealing with distortions as a result of 
wear and small morphological variations of ancient coins. Hitherto, the 
performance of our system on archaeological coin data is limited by the 
sensitivity to incorrect estimations of the centre of the coin stamp, and by the 



198 PAUL BOON et al.

INTERDISCIPLINARY SCIENCE REVIEWS, Vol. 34 No. 2–3, 2009

fi gure 3 Query-match pairs from the historical coin experiment.

TABLE 1

GENERALIZATION PERFORMANCE OF THE APPROACH FOR THE MODERN COIN DATASET

Gradient Correct (%) Unknown (%) Incorrect (%)

Magnitude 38.58 21.88 39.54
Orientation 92.92  6.70  0.38

TABLE 2

EXPERIMENTAL RESULTS ON THE ARCHAEOLOGICAL COIN DATASET

Gradient Query-match sim. (%) Standard dev. (%) Min. (%) Max. (%)

Magnitude 20.60  8.80 12.00 30.00
Orientation 43.60 10.19 26.00 60.00
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inability to deal with large morphological shape variations in archaeological 
coin stamps.

Ceramics profiles
In archaeology, pottery is typically documented using profile drawings that 
show a cross-section of the sherd or the complete pot. The shape is an 
important criterion for identifying the type and hence the age and origin 
of the pottery The assessment of shapes by humans is subjective and 
error-prone, which is why we propose to use techniques for shape matching 
to perform objective measurements on the similarity of ceramics profiles. 
Below, we describe our approach to the assessment of ceramics profiles, 
which consists of two main stages: (1) shape matching using shape contexts 
and (2) visualization using t-Distributed Stochastic Neighbour Embedding 
(t-SNE). 

Ceramic shape matching

In the literature, various schemes have been proposed for the comparison of 
shapes (Mokhtarian et al. 1996; Kim et al. 2000; Ricard et al. 2005; Zhang and 
Lu 2003; Grigorescu and Petkov 2003). After preliminary experiments with 
various shape matching schemes, we found that a matching scheme based on 
shape contexts was best tailored to the task of computing similarities between 
ceramics profiles. The shape matching scheme used is described below.

Shape contexts represent a shape contour by means of a collection of points 
that are sampled from the shape contour (Belongie et al. 2001). The sampling 
of points from the shape contour is performed using a method that selects 
points as uniformly as possible over the shape contour. The points that are 
sampled from the contour are represented by means of so-called shape 
context descriptors. Shape context descriptors represent statistical information 
for a single point on a shape contour in a small histogram. A shape context 
descriptor is computed for each point on the shape contour, and the complete 
set of shape context descriptors (a so-called shape context) for a single shape 
can be used to characterize a shape.

The shape contexts of two shapes can be compared using an elaborate 
scheme that attempts to determine how one shape should be warped in order 
to be transformed to the other shape. The �strength� of this transformation 
(the so-called energy) is diagnostic for the similarity between the two shapes: 
the larger the transformation, the more dissimilar the two shapes. As in the 
coin recognition system, the resulting similarity measure can be employed in 
a 1-nearest neighbour classifier or in the visualization technique we discuss 
below.

Visualization

The shape matching stage described above (and also the matching of coins 
described in the coin recognition system) results in a matrix that contains the 
pairwise (dis)similarities between all objects in the dataset. In the visualiza-
tion of these pairwise dissimilarities, we aim to construct a two-dimensional 
scatter plot (in which each point corresponds to a single ceramics profile) 
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in such a way that the pairwise dissimilarities between the profiles are 
modelled as well as possible in terms of the pairwise distances between their 
corresponding points in the scatter plot. Various techniques for multidimen-
sional scaling, such as classical scaling (Torgerson 1952) and Sammon 
mapping (Sammon 1969), are capable of constructing such scatter plots. We 
have reviewed these techniques (van der Maaten et al. 2009) and found them 
to suffer from serious shortcomings that prohibit successful visualization of 
real-world data. In order to alleviate these shortcomings, we opted to use a 
recently introduced technique called t-Distributed Stochastic Neighbour 
Embedding (t-SNE), which performs very well in the visualization of 
real-world datasets (van der Maaten and Hinton 2008).

Experiments

We performed experiments on a dataset of 996 ceramics profiles, most of 
which were found in the Dutch soil (the dataset also includes some African, 
South American, and Australian ceramics profiles). Figure 4 presents the 
results of our experiments. The figure reveals that our approach appropriately 
captures the shape variations in ceramics profiles. From the absence of clearly 
separated clusters in the visualization, we may conclude that there are no 
clearly distinguishable groups of ceramics. Such visualizations are useful to 
archaeologists and may be used in a semi-automatic, inductive way to meet 
the challenge of archaeology. More specifically, ultimately it will allow to 
incorporate the implicit knowledge of archaeologists into a transparent 
description or taxonomy of ceramic profiles.

Archaeological reports

The third subproject of the RICH project concerns the digital handling of 
textual information. Archaeological sources typically consist of images 
and text. The combined digital analysis of images and text facilitates the 
extraction of information from documents. As stated in the introduction, the 
archaeological knowledge, information, and data are distributed over a wide 
range of institutes. Efforts to archive archaeological reports in central digital 
repositories are under way. These repositories allow researchers to access 
reports digitally. However, searching for relevant visual and textual 
information from a certain period is cumbersome with plain search 
algorithms. Within the RICH project, information search software tailored to 
the archaeological domain is being developed that allows for more advanced 
search methodologies. The software is called �Open Boek� (Open Book) and 
can be used by archaeologists to automatically retrieve relevant (fragments of) 
PDF-documents from a large repository. The development of Open Boek was 
prompted by a series of discussions and meetings with interdisciplinary 
teams composed of machine learning experts and archaeologists. Currently, 
Open Boek focuses on the retrieval of text only. In future versions of Open 
Boek, retrieval from text and images will be realised by incorporating 
algorithms developed in the context of the second subproject.
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In order to explain the virtues of the Open Boek software, we focus on a 
specific example pertaining to the retrieval of textual information that refers 
to a certain historical period. Time and place are obvious dimensions in 
papers on archaeology and historical research. The main challenge addressed 
is how to retrieve documents on chronological criteria hidden in the text. A 
straightforward and common solution to this problem is the addition of 
metadata to the individual papers. The metadata, in turn, are attached to 
ontologies or typologies in which the time dimension of a concept is defined. 
However, adding metadata by humans is extremely costly and usually based 
on implicit knowledge. Moreover, such ontologies rapidly become unwieldy 
and the concepts are often contradictory. There is also the problem of 
granularity: a document or even a page may contain many chronological 
expressions that are not easily lumped into a single period.

fi gure 4 Visualization of 996 ceramics profi les using a combination of shape contexts and 
t-SNE. All profi les are shown at the same scale.
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In the Open Boek software, we adopt an alternative solution to the 
problem. We employ machine learning for the automatic recognition of 
chronological expressions in the text, either as named periods (�middle ages�), 
or as ordinals, cardinals, or numbers (�the fourth century�, �1568�1648�) and to 
build indexes containing these expressions in normalized form. When such 
indexes are built, they can be used to retrieve pages that contain references to 
a certain year or period.

A major problem is the categorization of the numbers in a text: when do 
numbers have chronological meaning (i.e., years, periods, or eras) and when 
do they not have this (i.e., dimensions, prices, or inventory numbers). We 
employed a classical and straightforward machine-learning technique called 
Memory-Based Learning (MBL) to assign numbers to the correct class. In the 
training stage of MBL, a database is created with labelled examples for a 
particular language. In the indexing stage, unseen examples are labelled 
according to their best-matching neighbours in the database. MBL methods 
are ubiquitous in machine learning and are all variants of the k-nearest 
neighbour algorithm (see, e.g., Duda et al. 2001). In Open Boek, we employ 
TiMBL 5.1,4 a decision-tree-based implementation of k-nearest neighbour 
classification. TiMBL uses indexes in the instance memory extensively and 
therefore can handle discrete data and large numbers of various examples 
well.

We perform chronological indexing in three stages. In the first stage, the 
candidate items for classification are collected by a numeric preparser that 
recognizes both written (i.e., �two�, �second�, �2nd�, �2-nd�, �VI�) and numerical 
(i.e., �1�, �100�) items. In this stage, a list with names (�middle ages�, �iron age�, 
�roman period�) is also consulted and the corresponding phrases are flagged 
as chronological phrases. All chronological phrases are labelled and stored 
in the database. It should be noted that the first stage is the only 
language-dependent stage in Open Boek. In the second stage, TiMBL is 
applied to the example phrases. Each (pre-parsed) phrase is matched to the 
stored examples in the database and labelled accordingly. The third and last 
stage is the normalization and creation of the index proper. This includes 
assignment to BC or AD, and the decision whether the expression contains a 
single year or is a period. The expression �between 1200 and 1300� is clearly a 
period, but so is �third century�, and �between the first century BC and the 
year 500�.

In this way, chronological information has become independent from the 
individual vernacular of the original author and with Open Boek, even higher 
resolution can be gained than is described in the original text. This is 
illustrated by the following example: assume that in a text on the famous 
castle �Muiderslot�, a period of �1375 to 1427� is mentioned. When a researcher 
for some reason is interested in what happened in the years around the turn 
of the fourteenth to fifteenth century, this particular treatise on the Muiderslot 
will be included, among many other documents in his/her catch.

The identification of useful semantic classes has been performed in 
collaboration between the computer scientists and archaeologists. This has led 
to three important additional features of Open Boek: (1) the recognition of 
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addresses and other toponyms, (2) the possibility to generate metadata 
for individual documents, and (3) the automatic extraction of salient 
chronological and topological data, complex-types, and other archaeologically 
interesting properties described in the text. These features will prove of 
pivotal importance when handbooks and monographs are digitized. For 
the moment, it is of high relevance to make available the huge amount of 
information that is stored in the thousands of archaeological reports that are 
produced each year. Without Open Boek, these reports remain largely closed 
to the general user.

Discussion and conclusions

The three RICH subprojects described address three distinct stages of 
archaeological research in the digital era. The digitization can be considered 
to be the initial step in any digital project that deals with real-world objects. 
From our description of the acquisition apparatus developed for the scanning 
of fractured surfaces, it became clear that the interdisciplinary nature of the 
CATCH project allowed us to acknowledge the importance of a three-
dimensional acquisition procedure. The solution can be readily adopted in 
archaeological practice. Information on pottery fabrics becomes more easily 
accessible, while strengthening transparency of decision and enhancing the 
efficacy and efficiency of the use of resources. Similarly, our development of 
automatic recognition techniques for archaeological objects (coins and ceramic 
profiles) was improved by arranging interdisciplinary team meetings. Our 
machine-learning technique presents results visually to the archaeologists, 
which facilitates the evaluation and detection of inconsistencies by the 
technique or archaeologist. New research questions will be raised and new 
insights will follow. In particular, the archaeologist will be able to investigate 
time/place relationships and dependencies. Finally, the need for the Open 
Boek initiative arose from a specific desire from archaeologists and historians 
to search in a more intelligent manner for archaeologically relevant 
information in a large collection of reports.

From our experience in the three subprojects, it is evident to us that an 
approach in which computer scientists work in isolation from experts in the 
application domain (in this case in archaeology) is bound to fail. Technical 
obvious solutions often do not solve the domain-specific problems at hand. 
The lesson learned from the RICH project is that a successful interdisciplinary 
collaboration requires an intensive communication between two (or more) 
disciplines and preparedness to attempt to understand the �other way of 
thinking�. In our specific case, computer scientists prefer to think in terms of 
clear definitions and of ground truths. Such thinking is warranted within 
the computer science domain, because computers are well defined and 
(theoretically) operate in a predictable manner. This contrasts with the 
archaeological domain where definitions and classifications are fuzzy and 
continuously the subject of debate or controversy. We conclude by stating that 
bridging both worlds is an effort in itself, but rewarding as it is to the benefit 
of both. Computer scientists become acquainted with a new challenging 
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application domain and archaeologists learn how to use digital tools to work 
towards the goal of achieving a more objective description of archaeological 
knowledge. It is exactly this rich cross-fertilization that exemplifies the 
success of the RICH project.
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Notes
1 GIS is an abbreviation for Geographic Information 

System.
2 See http://www.referentiecollectie.nl/sequenceviewer

3 The dataset is publicly available for download from 
http://muscle.prip.tuwien.ac.at

4 TiMBL is available online from http://ilk.uvt.nl
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