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The Journal of Immunology

Categorical Analysis of Human T Cell Heterogeneity with
One-Dimensional Soli-Expression by Nonlinear Stochastic
Embedding

Yang Cheng,* Michael T. Wong,* Laurens van der Maaten,† and Evan W. Newell*

Rapid progress in single-cell analysis methods allow for exploration of cellular diversity at unprecedented depth and throughput.

Visualizing and understanding these large, high-dimensional datasets poses a major analytical challenge. Mass cytometry allows for

simultaneous measurement of >40 different proteins, permitting in-depth analysis of multiple aspects of cellular diversity. In this

article, we present one-dimensional soli-expression by nonlinear stochastic embedding (One-SENSE), a dimensionality reduction

method based on the t-distributed stochastic neighbor embedding (t-SNE) algorithm, for categorical analysis of mass cytometry

data. With One-SENSE, measured parameters are grouped into predefined categories, and cells are projected onto a space

composed of one dimension for each category. In contrast with higher-dimensional t-SNE, each dimension (plot axis) in One-

SENSE has biological meaning that can be easily annotated with binned heat plots. We applied One-SENSE to probe relationships

between categories of human T cell phenotypes and observed previously unappreciated cellular populations within an orches-

trated view of immune cell diversity. The presentation of high-dimensional cytometric data using One-SENSE showed a significant

improvement in distinguished T cell diversity compared with the original t-SNE algorithm and could be useful for any high-

dimensional dataset. The Journal of Immunology, 2016, 196: 000–000.

T
he development of fluorescence-based flow cytometry
(FACS) (1) and the ability to probe single-cell protein
expression with high throughput has been instrumental in

laying the foundations of cellular immunology. More recently,
high-dimensional polychromatic flow cytometry (2), mass cyto-
metry (3), and high-throughput single-cell transcriptomics (4–6)
approaches allow for identification of multiple subpopulations of
cells and the ability to probe relationships between expression
levels of large numbers of proteins or genes simultaneously (7).
Hierarchical subgating based on biaxial plots offers a straight-
forward approach to analyze flow cytometry data, but this
becomes impractical when interpreting the immense detail gen-
erated from mass cytometry (8) or other high-dimensional ap-
proaches.
To circumvent difficulties in visualizing high-dimensional data

(9), numerous platforms based on clustering algorithms and/or

dimensionality reduction have been developed to dissect mass
cytometry (10–14) and other single-cell analysis data (4, 5).
Principal component analysis (PCA) is a widely used dimension-
reduction technique that constructs new summary parameters by
linearly combining all data parameters to maximally explain
variance in the data. Other methods that account for nonlinear
relationships between parameters can analyze data with consid-
erably higher resolution, allowing segregation of rare or subtly
distinct populations. One such method, called t-distributed sto-
chastic neighbor embedding (t-SNE) (9), performs exceptionally
well on mass cytometry data (10, 12, 14). t-SNE performs pair-
wise comparisons of all events and maps them in a low dimen-
sional space, optimally arranging similar events nearby and
dissimilar events farther away. One major limitation of t-SNE and
other nonlinear dimensionality reduction methods is that the val-
ues on the axes of the plots are arbitrary and have no intrinsic
meaning. In particular, the function that t-SNE minimizes is in-
variant under rotations of the low-dimensional map, which implies
that t-SNE visualizations can be arbitrarily rotated (15). Further-
more, even arbitrary directions in the visualizations have no
meaning in the sense that they do not consistently indicate the
same change in the underlying parameters. Thus, although the
relative placement of cells by t-SNE is meaningful in that nearby
events are phenotypically similar, understanding the relationships
between the cellular arrangement and the underlying parameters
can be tedious and labor-intensive.
A major goal of high-dimensional analysis of cells is to un-

derstand the relationships among various conceptual aspects of
cellular biology. One lasting paradigm of human T cell immunology
is based on experiments identifying the critical relationships be-
tween surface marker expression (e.g., CD45RA and CCR7) and
functional properties (e.g., cytokines and cytotoxicity) of cells.
These experiments created commonly used working definitions of
naive, memory, effector, and terminally differentiated subtypes of
T cells (16, 17), along with the addition of other differentiation
markers such as CD127 and KLRG-1(18–20). With the advent of
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mass cytometry, many more markers can be incorporated to better
describe the differentiation state of cells, along with numerous
indicators of T cell function (11), trafficking profiles (21), or
regulatory capacity (22).

Materials and Methods
PBMCs

Human PBMCs were obtained from three healthy donors within the Sin-
gapore Immunology Network, under the Institution Review Board (IRB)
regulations.Whole bloodwas drawn and PBMCswere isolated using Ficoll-
density gradient (Ficoll-Paque PLUS; GE Healthcare). Cells were cry-
opreserved in 90% FBS + 10% DMSO before use in experiments.

Cell stimulation, staining, and mass cytometry

PBMCswere thawed, washed, and rested in complete RPMImedia (cRPMI,
10% FBS, 1% penicillin/streptomycin/L-glutamine, 1% 1M HEPES, and
0.1% 2-ME) overnight at 37˚C in 24-well tissue culture plates (BD Fal-
con). On the next day, cells were washed with cRPMI and plated at 15 3
106 cells/ml in 96-well round-bottom plates (BD Falcon) in the presence of
150 ng/ml PMA, 1 mM ionomycin, brefeldin A (eBioscience), monensin
(eBioscience), and 0.5 mg/ml anti-CD107a for 6 h at 37˚C.

Cells were washed once with cRPMI and once with CyFACS buffer (2%
FBS + 2 mM EDTA + 0.05% sodium azide in PBS) after stimulation. Cells
were incubated with 200 mM cisplatin (Sigma) on ice for 5 min to measure
viability. For functional assessment of CD8+ T cells, cells were washed
once with CyFACS, then stained with a primary Ab mixture on ice for 30
min (Supplemental Table I). After incubation, cells then were washed once
with CyFACS, once with PBS, and fixed with 2% PFA (paraformaldehyde;
Electron Microscopy Sciences) overnight at 4˚C. On the second day, cells
were incubated in permeabilization buffer (Biolegend) at room tempera-
ture for 10 mins and then stained with an intracellular Ab mixture at room
temperature for another 45 min for subsequent cell barcoding.

For examination of CD4+ “Tregness,” cells were resuspended with
FOXP3 fixation/permeabilization buffer (eBioscience) on ice for 30 min.
After cells were fixed and permed, cells were washed once and stained
with a biotinylated anti-FOXP3 Ab in perm buffer on ice for 30 mins. Cells
were washed with perm buffer, and an intracellular Ab mixture was added
into the cell suspension and cultured on ice for another 30 min. After the
staining, cell were washed with PBS and fixed with 2% PFA overnight at
4˚C, and permed again using perm buffer (Biolegend) on the next day.

For cell barcoding, 2 mM bromoacetamidobenzyl-EDTA (BABE; Dojindo)
with 0.5 mM PbCl2 was dissolved in HEPES buffer. After the permeabilization,
each sample was given a unique dual combination of metal-barcodes (BABE-
Pd-104, BABE-Pd-106, BABE-Pd-108, BABE-Pd-110) for 30 min on ice
(Supplemental Table I). After barcoding, cells were washed with perm buffer
and then cultured in CyFACS on ice for 5 min. Cells were washed once and
labeled by Rhodium-103 DNA interchelator (Fluidigm) in 2% PFA at room
temperature for 20 min. Cells were further washed once with CyFACS and
twice with MilliQ water. Upon cytometry by time-of-flight (CyTOF) acquisi-
tion, all samples were mixed together and prepared at 5 3 105 cells/ml in
water. Two percent of EQ beads (Fluidigm) were mixed with cell suspension
for quality control. All calibration and acquisition settings were performed
according to Fluidigm’s instructions.

Data analysis

After CyTOF acquisition, any zero values were randomized using a uni-
form distribution of values between zero and minus-one using a simple R
script (as was the default operation of previous CyTOF software). Note
that all other integer values obtained by the CyTOF are also randomized
by default. The signal of each parameter was normalized based on the
EQ beads (Fluidigm) as previously described (23). T cells were gated
and debarcoded using Boolean gating in FlowJo (Tree Star) similar to
that described previously (12). After gating on populations of interest
(Supplemental Fig. 1A), each sample was exported for further dimen-
sionality reduction analysis, including t-SNE and one-dimensional soli-
expression by stochastic embedding (One-SENSE) using custom R
scripts based on the “flowCore” and “Rtsne” [using Comprehensive R
Archive Network (CRAN) R packages]. In R, all data were transformed
using the “logicleTransform” function and w = 0.25, t = 16409, m = 4.5,
a = 0 as input parameters to roughly match scaling historically used in
FlowJo. For each set of analyses, each cell subset (CD4+ and CD8+ T cells)
from each donor was randomly downsampled to an equal number of cell
events to normalize the contribution between donors: total CD8+ T cells,
34,000 events; functional CD8+ T cells, 22,000 events; and functional
CD4+ regulatory T cells (Tregs), 6000 events. Functional CD8+ T cells

were defined by Boolean gating containing cells expressing any of the 15
functional markers (Supplemental Fig. 1B). Functional CD4+ Treg-like
cells were Boolean-gated on cells positive for either one of six Treg
markers (T cells that expressed only CTLA-4+ were excluded to separate
effector cells) (Supplemental Fig. 1C).

The parameters that were used in t-SNE or One-SENSE analysis are
indicated in Supplemental Table I. For One-SENSE analysis, manually
selected categories of markers (Supplemental Table I) were used as input
for the function and R package “Rtsne” set to map data into a single di-
mension for each category. These values were appended to fcs files for
subsequent analysis using R or FlowJo. Two- or three-dimensional plots
were then constructed based on values obtained for each category. To
describe the meaning of each of these one-dimensional maps (and each
axis of the resulting plots), we constructed histograms and/or heat plots
based on cells residing in bins corresponding to small ranges of values for
each axis. FlowJo software was used to construct histograms of marker-
positive cells across the entire range of One-SENSE axes values using
default binning. Positive gate of each marker was manually defined, and
markers within the same category were combined to present a histogram
plot with the assigned categorical dimension on x-axis. It represents the
distribution of marker-positive cells in percentage on each “bin” of One-
SENSE axis. Heat plots were constructed using R by calculating marker
frequency (or median intensities) of cells in each 250 bins for each axis.
These values were normalized using manually set upper and lower limits to
account for differing levels of background staining of each marker.

One-SENSE analysis and workflow

After cell acquisition using CyTOFII (Fluidigm DVS), metal signals of
measured parameters were randomized and normalized. Cells of interest
(e.g., CD8+ T cells) were gated using FlowJo (Supplemental Fig. 1A) and
exported as a single FCS file for each sample. The files were further loaded
into an R environment for downsampling and dimensionality reduction
analysis, including t-SNE and One-SENSE. The source code of t-SNE
was obtained (http://lvdmaaten.github.io/), with necessary adjustment of
“logicleTransform” function (12). The technical procedures of One-SENSE
workflow and required R packages are described as follows and in Fig. 1.

Note 1: We used R (http://www.r-project.org), a functional comput-
ing language and interactive environment, to implant the function
(“downsampling” and “logicleTransform”) and algorithms (t-SNE and
One-SENSE), and generate data visualization. One-SENSE was devel-
oped using RStudio (http://www.rstudio.com), a user-friendly interface
for R. Another platform that has similar function could be also applied
for One-SENSE analysis, such as MATLAB.

Note 2: Downsampling function was conjoined and run before the di-
mensionality reduction algorithm, including t-SNE and One-SENSE.
The numbers of random downsampling between samples were de-
scribed as detailed earlier.

Note 3: The “flowCore” package for flow cytometric data structure
was installed in R from Bioconductor (http://www.bioconductor.org).
“logicleTransform” function was applied to match the scaling histor-
ically used in FlowJo, with input parameters of w = 0.25, t = 16409,
m = 4.5, a = 0, as previously described (12). All other CRAN R
packages, including “Rtsne,” “vegan,” “permute,” and “lattice,” were
downloaded from CRAN (https://cran.r-project.org/) using RStudio.

Note 4: One-SENSE and t-SNE were run in parallel for comparison
of their utility in T cell analysis. The methodology and mathematical
description of t-SNE can be found (9) and downloaded (http://
lvdmaaten.github.io/).

Note 5: Compared with t-SNE that takes all measured markers to cal-
culate the pairwise distance of cells to embed cells in a two- or three-
dimensional space, One-SENSE performs one-dimensional t-SNE for
each predefined category of T cell markers. The assignment of T cell
markers was written into a csv file and further loaded onto One-SENSE
script in R (see Supplemental Table I).

Note 6: Each T cell category was independently analyzed by one-
dimensional t-SNE, and a range of 250 bins was used to arrange cells
in single dimension. The alignment of 250 bins was optimized arbi-
trarily for better visualization.

Note 7: One-SENSE subsequently generated the heat plots for each one-
dimensional t-SNE of predefined category by using function heatmap.2
of R package “gplots.” The heat plot is composed of the assigned
markers and represents their categorical expression. The numbers of
bins for each heat plot correspond to its categorical one-dimensional
t-SNE. Importantly, the presentation of categorical expression is
purpose-driven and user-defined, which can be visualized in heat plot

2 T CELL ANALYSIS BY ONE-SENSE
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FIGURE 1. One-SENSE analysis workflow. The workflow describes the step-by-step details for analyzing T cell categorical relationship using One-

SENSE. See Materials and Methods.

The Journal of Immunology 3
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or histogram. The histograms can be plotted by overlapping categorical
markers using FlowJo.

Note 8: One-SENSE uses these “binned” one-dimensional t-SNE to
project the categorical expressions of cells from each axis onto a two-
or three-dimensional plot, which depends on how many categories were
predefined. Consequently, exported heat plot images were aligned on
each axis of One-SENSE plots by manually adjusting logicleTransform
parameters to match the scaling used by FlowJo, to annotate the cellular
markers and categorical relationship.

Note 9: The axes (or categorical dimensions) of One-SENSE can be
used interchangeably for investigating T cells in a FlowJo platform.

Note 10: A three-dimensional One-SENSE image (Fig. 5, Supplementary
Video 1) is created by using an R-written script loaded with “rgl” and
“scatterplot3d” packages with three categorical dimensions.

Note 11: After the analysis, One-SENSE generates and exports the data
as FCS file, providing the accessibility for further analysis using FlowJo
or other FCS-compatible analytical software.

Neighborhood preservation analysis

A random sample of 10,000 total CD8+ T cells (as plotted in Fig. 1) and all 37
relevant parameters (Supplemental Table I) were used for nearest-neighbor
analysis. Nearest neighbors for each cell were identified using the “knnx.
index” function part of the “FNN” R package, with k set to 100. This function
was applied to each cell using raw 37-dimensional data and to each
dimensionality-reduced dataset generated using one- to seven-dimensional
t-SNE versus PCA. For each cell and in each dimensionality-reduced data-
set, the neighborhood preservation ratio was determined by calculating the
percentage of k nearest neighbors matching those identified in 37 dimensions
as in the dimensionality-reduced dataset. The average neighborhood preser-
vation ratio was also calculated for each dimensionality-reduced set by aver-
aging the neighborhood preservations ratio over the entire data set.

Three-dimensional video of CD8+ T cells in One-SENSE view

CD8+ T cells analyzed by One-SENSE with three dimensions (differen-
tiation, function and trafficking) were exported and loaded into an R en-

vironment. The R-written script with rgl package that supports three-
dimensional visualization was used to construct numerous three-
dimensional images using these three One-SENSE dimensions. The
continuous image sequences were further combined by Sequimago
(AppleScript) to generate three-dimensional video.

Results
The rationale of One-SENSE

In this article, we propose and demonstrate an approach that
facilitates a type of categorical analysis that we called One-
SENSE). “Soli” comes from the musical term referring to the
entire section of an ensemble performing together as opposed
to solo. One-SENSE measures cellular parameters assigned to
manually predefined categories, and a one-dimensional map is
constructed for each category using t-SNE (see Fig. 1; see
Materials and Methods). An advantage of this approach is that
each dimension (axis) is informative and can be annotated
through the use of heat plots aligned in parallel to each axis,
allowing for simultaneous visualization of two categories across
a two-dimensional plot. The cellular occupancy of the resulting
plots allows for direct assessment of the relationships between
the categories. Although t-SNE is becoming widely used for
its ability to map cells into two-dimensional space with high
resolution (4, 5, 12), t-SNE also performs remarkably well even
when mapping is restricted to a single dimension (15). To ad-
dress this and quantitatively compare the performance of t-SNE
in mapping high-dimensional mass cytometry data into lower
dimensional projections, we performed a neighborhood preser-
vation analysis (Fig. 2). In this analysis, the k-nearest neighbors
were identified for each cell using 37-parameter mass cytometry
data (using k = 100, which represents 1% of the 10,000 human

FIGURE 2. Neighborhood preservation analysis of t-SNE versus PCA used at varying degrees of dimensionality reduction. To quantitatively assess the

performance of t-SNE compared with linear PCA at various mapping dimensionalities, we used a neighborhood preservation analysis strategy. CD8+ T cells

(10,000 random events sampled from 3 different donors as in Fig. 3) were used and 37 parameters for each cell (all parameters used for Figs. 3 and 4). For

each cell, the nearest 100 neighbors were identified in 37 dimensions. The same cells were mapped into one to seven dimensional space using t-SNE or

PCA. Based on these results the 100 nearest neighbors were also identified, and the ratio of these cells matching those identified using all 37 dimensions

was calculated to assign a neighborhood preservation ratio. (A) Histograms of the neighborhood preservation ratio for this 10,000-cell dataset are plotted for

the one- to four-dimensional t-SNE and PCA mappings. (B) Average neighborhood preservation ratios are plotted for one- to seven-dimensional t-SNE

versus PCA mappings. Note that one-dimensional t-SNE outperforms three-dimensional PCA on this dataset (in terms of neighborhood preservation), and

that gains in performance coming from the use of$2 dimensions of t-SNE are modest compared with that achieved by just a single dimension. Specifically,

t-SNE performance in one dimension is already at .70% of the maximal performance possible for higher dimensional t-SNE mapping of these data. Note

though that t-SNE performance in .3-dimensional mappings can improve by increasing the number of degrees of freedom of the Student t kernel (15).

4 T CELL ANALYSIS BY ONE-SENSE
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CD8+ T cells used for this analysis, in Fig. 3). After t-SNE
analysis (and mapping to various numbers of dimensions), the
k-nearest neighbors were identified for the same cells, and the
fraction matching those identified for the 37-dimensional dataset
was calculated as the neighborhood preservation ratio for each
cell. This analysis shows that one-dimensional t-SNE is already
more effective than three-dimensional PCA and performs to a
level that is ∼78% of maximum for t-SNE at any number of di-
mensions (Fig. 2B; see Materials and Methods).
To illustrate the utility of One-SENSE for analysis of single-cell

data, we applied a mass cytometry panel of Abs to probe 44 proteins
expressed by human CD8+ T cells (Fig. 3, Supplemental Table I)
from three healthy donors to assess the relationships among dif-
ferentiation state, functional capacity, and trafficking receptor
profiles. After using several markers to identify CD8+ T cells
(Supplemental Fig. 1A, 1B), the remaining markers were allo-
cated to three different categories. Markers such as CD45RA,
CCR7, CD127, KLRG-1, CD28, and CD62L were linked to T cell
differentiation; cytokine secretion and cytotoxic activity, in-
cluding IFN-g, TNF-a, IL-2, and granzyme B, were grouped
as function; chemokine receptors like CXCR5, CXCR3, and
CCR5 involved in T cell homing were classified as trafficking
(Supplemental Fig. 1, Supplemental Table I). Consequently,
One-SENSE generates three dimensions for each category composed
of assigned protein markers (Figs. 1, 3). To make One-SENSE
method more accessible, we provide a detailed description and

workflow of One-SENSE analysis in Fig. 1 and Materials and
Methods.
Using these categories, we analyzed the One-SENSE repre-

sentation of total human CD8+ T cells in terms of differentiation
versus function to investigate alterations in T cell functionality
that would be hypothesized to occur as cells differentiate
(Fig. 3A). This approach was compared with traditional biaxial
gating and with a two-dimensional t-SNE plot. From this anal-
ysis, a large number of T cell subsets with distinct combinations
of differentiation marker expression versus functional profiles
could be readily seen. The identities of each subset could be
inferred without subsequent analysis by interpreting and anno-
tating the information from each axis using aligned heat plots
(Fig. 3A). It is noteworthy that the expression level of markers
on each bin using heat plot is user-defined, which can be pre-
sented as frequency of marker-positive cell, average marker in-
tensity (data not shown), or using histogram to indicate the
distribution of marker-positive cells. Naive-like cells that ex-
pressed relatively high levels of CD45RA, CCR7, CD62L, and
CD28 occupied one large section on the plot. As expected, these
naive cells were limited in their ability to produce cytokines,
except for a small subset of IL-8–producing cells. In contrast,
cells with a memory/effector profile displayed a large range of
functional diversity, and minor populations with distinct com-
binations of differentiation and functional characteristics were
promptly observed, such as a helper-like (24, 25) population

FIGURE 3. Rationale and representation of One-SENSE. Human PBMCs isolated from three healthy donors were stained and acquired by mass cytometry

for dimensionality reduction analysis. Total CD8+ T cells were exported and analyzed by t-SNE and One-SENSE in parallel. (A) Plots show comparison of

protein marker visualization between t-SNE (Tutti-expression) and One-SENSE (Soli-expression) in different dimensions. Protein markers were assigned to

various immunological categories based on previous studies. Shown is a One-SENSE view of CD8+ T cells displaying differentiation against function. Cells are

aligned to a range of 250 bins (column of cells) on the categorical dimensions (axes) that are composed of cellular protein expression. Each categorical di-

mension is a one-dimensional t-SNE analysis (Fig. 1). Heat plots indicate the frequency of marker-positive cells in each bin. One-SENSE shows nonfunctional/

naive T cells are mainly located in the upper left corner of the map, whereas multifunctional effector and memory T cells have diverse combination clusters on

the opposite area. Cellular features of clusters can be described by the coordination of cis and trans coexpression from each axis. (B) Comparison of One-

SENSE and t-SNE on MAIT cells is shown (top). Histograms (bottom) of the indicated markers are shown for the gated populations of MAIT cells. (C) The

frequency and ratio of MAIT 1 and MAIT 2 population identified between donors using One-SENSE.

The Journal of Immunology 5
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coexpressing CD40L, IL-2, and ICOS. It is noteworthy that this
approach provided immunologically meaningful segregation of
cells with functional differences within the same phenotypic
subsets. For example, coexpression of CD161+Va7.2 + is used
to identify mucosal-associated invariant T (MAIT) cells (iden-
tified by a distinct profile of differentiation-state markers). One-
SENSE analysis showed a clear separation of MAIT cells harboring
two distinct functional subsets, whereas there was limited separation
on its t-SNE counterpart (Fig. 3B). Notably, this approach also al-
lows for comparisons between individuals. In this case, we observed
heterogeneity in the frequencies of total MAIT cells and a consis-
tent ratio of the two functionally distinct subsets identified in this
study (Fig. 3C).

Use of One-SENSE to assess the heterogeneity of human
peripheral CD8+ T cells

Unlike the clear functional and transcriptional classification of
CD4+ T cells, CD8+ T cells are often designated by their differ-
entiation status instead of functionality. This may ignore the
functional diversity of CD8+ T cells. Thus, we focused our One-
SENSE analysis on how the functional attributes of CD8+ T cells
might be associated with cell differentiation or trafficking. Sub-
sequently, functional CD8+ T cells were exported and analyzed by
One-SENSE (see Materials and Methods). We observed numerous
multifunctional T cell subsets residing on different columns of the
function dimension, indicating the differential composition of these
15 functional markers between subsets (Fig. 4A, Supplemental Fig.
2A). Notably, the nomenclatures used in this study are only for the
purpose of labeling observed subsets, but do not necessarily corre-
spond to previously published T cell subsets. We named the most

abundant CD8 subset as Tc1 (IFN-g+TNF-a+CD107ahiGrzB+),
which expressed markers typical of CD8+ T cells. Cells with the
highest cytotoxicity (PerforinhiGrzAhiGrzB+CD38+) (Supplemental
Fig. 2A, 2B) expressed the chemokine receptor CXCR1 (26), but
low levels of IFN-g and TNF-a, which we labeled as specialized
killer Tc2 cells. Tc3 cells displayed a similar profile as Tc1, but
expressed low levels of CD107a and increased MIP-1b. Exclusive
production of GM-CSF, along with augmented chemokine expres-
sion (MIP-1a, MIP-1b, and IL-8), were deemed as Tc4 cells that
we hypothesized to have an important role in immune cell re-
cruitment (Fig. 4A, Supplemental Fig. 2A).
One-SENSE also highlights the presence of several rare subsets,

including IL-2hiCD40LhiCCR4+ helper-like (24, 25) and CD39+

CTLA-4+ Treg-like CD8+ T cells (Fig. 4A, Supplemental Fig.
2A). These subsets were observed consistently between individ-
uals (Supplemental Fig. 2C). To further demonstrate the advan-
tages of One-SENSE, we used the functional subset Tc1 as an
example. Although this subset was clustered on the same column
of the function dimension, they were separated with the differ-
entiation dimension based on differential expression of CD57 and
CD45RO (Fig. 4B). In addition, each subset of Tc1 could be
further expanded to five subpopulations by their localization
profile using the trafficking dimension, suggesting differential
states of T cell memory and mobility (21) (Fig. 4B, 4C). Notably,
Tc1 cells differing in trafficking receptor profiles were poorly
segregated by two- (Fig. 4C) or three-dimensional (Fig. 5) t-SNE
analysis (Supplementary Videos 1, 2). Thus, this analysis dem-
onstrates the utility of One-SENSE as a simple and effective way
to explore the remarkable versatility of CD8+ T cells (summarized
in Fig. 4D).

A B C

D

FIGURE 4. Versatile differentiation and trafficking of functional peripheral Tc1-profiled CD8+ T cells. Functional CD8+ T cells were defined by cells

expressing at least one functional marker (Supplemental Fig. 1, Supplemental Table I) and combined by Boolean gating before One-SENSE analysis. (A)

Cells were clustered using three independent categorical dimensions (differentiation, function, and trafficking). The functional heterogeneity of CD8+

T cells is observed by the function dimension on the One-SENSE map. Diverse patterns of differentiation and trafficking of functional CD8+ T cells are

shown by changing the y dimension. Numerous functional subsets are indicated using this method as shown. (B) Differentiation and trafficking status of

CD8+ T cells that have the same functional profile are further analyzed using One-SENSE. Three Tc1 subsets are observed on the differentiation dimension,

whereas the trafficking dimension further segregates each of them into the other five subpopulations. (C) t-SNE view shows very minimum separation of

these subpopulations. (D) Summarized One-SENSE plot represents the complex heterogeneity of the Tc1 subset.
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Diverse profiles of human Tregs and regulatory-like T cells

Tregs are critical regulators of the adaptive immune system and
play especially important roles in autoimmune disease and tumor
immunology. However, prior studies have used inconsistent defi-
nitions to identify these cells with suppressive activity, and the
extent of phenotypic and functional heterogeneity is not clear (22,
27). Therefore, by focusing on cells that express one or more
markers associated with suppressive activity (markers of “Treg-
ness”; Supplemental Fig. 1C), we examined the relationships be-
tween these markers and markers of differentiation, function, and
trafficking using One-SENSE (Fig. 6). Our data illustrate a diverse
expression pattern of regulatory markers among seven apparent
Treg-like functional subsets (Fig. 6A, Supplemental Fig. 3A).
FOXP3 is predominant in three subsets (labeled Treg-like 1, 2, and
3), with various expression of CD25, CD39, and CTLA-4 (Fig.
6B) (28). Although they are distinct, each of these subsets appears
to be quite homogenous with respect to all other markers probed
(on the “All Others” axis). These three subsets fit best with ca-
nonical descriptions of Treg populations previously reported (22).
In contrast, the subsets labeled Treg-like 4 and 5 have minimal

FOXP3 expression, and are both heterogeneous in their effector
and trafficking marker expression (Fig. 6B, Supplemental Fig. 3B,

3C), which is hardly observed by t-SNE (Supplemental Fig. 3D).
Lastly, cells with a FOXP32 (29) regulatory profile, which we
labeled Treg-like 6 and 7, display elevated expression levels of
IL-10 and LAG-3 (29), respectively (Fig. 6B). In summary, this
analysis of Treg-like cells demonstrated how One-SENSE could
be used to highlight and quickly describe the heterogeneity of
cells expressing markers associated with suppressive activity. We
anticipate that this analysis approach would be well suited for
identifying populations of cells associated with immunological
dysfunction, such as in the context of autoimmunity or cancer.

Discussion
Using example datasets, we demonstrate the utility of One-SENSE
in uncovering the depth of T cell heterogeneity. One-SENSE
uniquely provides users with the ability to assign multiple parame-
ters to predefined categories, while preserving the essence of the
t-SNE algorithm. Our data demonstrate how this approach can be
used to intuitively visualize relationships within high-dimensional
data and to test hypotheses regarding the existence of these rela-
tionships.
One of the major limitations when using dimensionality re-

duction analysis onmass cytometry data, including SPADE-, PCA-,
and t-SNE–based algorithms, is the annotation of cell clusters.
Because visualization of protein markers one by one on a t-SNE
map is not ideal, describing the coexpression of two or more
markers is even more difficult. Researchers have to subjectively
anticipate the possible combinations of markers, which could
lead to potential bias when considering unknown cell subsets
and the heterogeneity of cells. One-SENSE provides an objective
and effective systemic overview of marker annotation (including
protein coexpression). It allows direct assessment between cel-
lular properties and the observation of subtle differences within
common cell subsets, as we demonstrated in this article using
MAIT cells as an example.
Descriptions of human CD8+ T cell subsets have mostly relied

on markers associated with cell differentiation (e.g., CD45RA and
CCR7) (16). However, cellular profiles of human CD8+ T cells
based on either cell differentiation markers or functional capac-
ities are each highly complex using our unsupervised One-SENSE
analysis, suggesting that the traditional definitions of human CD8+

T cell subsets based exclusively on a few differentiation markers
may not be sufficient. In contrast, coexpression of IFN-g, TNF-a,
and IL-2 are cytokines often used to designate polyfunctional
CD8+ T cells, which have been widely known as Tc1 cells (30).
Previous studies have also described other CD8+ T cell functional
subsets, such as IL-4–producing CD8+ T cells (31, 32), CD8+

Tregs (33, 34), and helper-like CD8+ T cells (24, 25). How-
ever, the functional heterogeneity of CD8+ T cells has not been
systemically examined. This is likely limited by traditional ex-
perimental and analytical approaches, where coexpression of
functional proteins is difficult to identify objectively. Using One-
SENSE, we demonstrate the functional versatility of CD8+ T cells
by examining 15 different functional markers and their possible
coexpression combinations with an unsupervised analytical ap-
proach. This is poorly brought out using traditional differentiation-
based classification. From this, we observed at least six different
functional CD8+ T cell subsets, which is consistent across donors.
Although we did not perform subsequent experiments to charac-
terize observed functional CD8+ T cell subsets, the existence of
these subsets has been implied. For instance, Feau et al. and
Frentsch et al. have described the helper function of IL-2– (24)
and CD40L (25)-expressing CD8+ T cells, respectively. Interest-
ingly, data from Frentsch et al. showed a population of IL-2hi

CD40LhiCD8+ T cells, which is in line with our observation of

FIGURE 5. Three-dimensional images of trafficking characteristics of

Tc1-profiled CD8+ T cells subsets. Comparison of three-dimensional One-

SENSE and three-dimensional t-SNE analysis. Functional CD8+ T cells

were gated (Materials and Methods), and Tc1_1 CD8+ T cells were de-

fined as shown in Fig. 4. Three-dimensional One-SENSE view of func-

tional CD8+ T cells reveals unprecedented degree of heterogeneity, whereas

three-dimensional t-SNE poorly segregates these minor subpopulations.

Cells in three-dimensional image of One-SNESE were projected from

three different axes of categorical dimensions (Fig. 1). Five subpopulations

of Tc1 subset 1 (Tc1_1) are colored as shown here and in Supplementary

Videos 1 and 2, for three-dimensional video of One-SESNE and t-SNE,

respectively.
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IL-2hiCD40LhiCCR4+CD8+ T cells with additional production of
TNF-a and GM-CSF (Fig. 4A, Supplemental Fig. 2A), and can be
readily detected using One-SENSE (Figs. 3A, 4A).
Tregs are widely known to possess remarkable plasticity and

functional diversity (22, 35, 36), and recent focus on the balance
of Tregs and pathogenic Th17 cells in autoimmune disease has
drawn significant attention. One major difficulty in isolating this
unique subset is the paucity and inconsistency of human Treg
markers (35). The master transcription factor FOXP3 (27) has
been used as the most reliable marker of bona-fide Tregs. How-
ever, some effector T cells transiently express FOXP3hi upon ac-
tivation in an inflammatory environment (37, 38). It has also been
shown that a fraction of Tregs may lose FOXP3 expression while
acquiring expression of the suppressive cytokine IL-10 (29). One-
SENSE revealed heterogeneous Treg subsets based on the categorical
expression of differential cellular and Treg properties. For instance,
Treg-like subset 4 expressed FOXP3loCD127loCD39+CTLA-4+, with
four subpopulations separated by their various expressions of IL-2,
TNF-a, and CLA. This heterogeneity within a single Treg subset is
again difficult to distinguish in a traditional t-SNE map. Taken to-
gether, we demonstrate that One-SENSE could be useful for studying
T cell heterogeneity, which can be applied to other Th cell subsets;
for instance, the discrepant trafficking and memory profile of human
peripheral follicular Th cells, as recently described in the context of
HIV (39) and influenza infection (40, 41).
The aim of this study is to provide detailed and thorough de-

scription of One-SENSE, and to demonstrate its utility for the
analysis of immune cell heterogeneity. In the process, a number of
interesting cellular subsets can be identified. We showed that these
subsets can also be quantified for each sample and then these
frequencies can be compared between samples run together. We
also demonstrated this by comparing the frequencies of various cell

subsets across three different donors analyzed. Although we have
used only three donors in this report, the distinct T cell subsets
(functional CD8+ T cell and CD4+ Treg) identified by One-SENSE
were consistently observed across donors, in both frequency and
cellular protein composition. In the same manner, we anticipate
that One-SENSE would also be useful to investigate the categor-
ical relationship of T cells in comparison of patient cohorts.
Compared with two-dimensional t-SNE, each axis in One-

SENSE has a specific meaning that can be conveniently annotated
on the plot. Importantly, this analysis approach is customizable,
driven by the purpose or hypothesis of the experiment. The main
benefit of One-SENSE is its utility for directly testing hypotheses
about the relationships between different categories of cellular
diversity. We anticipate that One-SENSE would be well suited for
the analysis of any high-dimensional single-cell data (6) for the
purposes of identifying novel biomarkers associated with immu-
nological dysfunction, such as in the context of autoimmunity or
cancer. One-SENSE would also be useful for defining new or rare
immune cell subsets and their heterogeneity (e.g., function and
differentiation), especially when comparing disease and healthy
individuals. We expect that the robustness of One-SENSE will
largely improve the analysis of high-dimensional mass cytometry
data and should be broadly applicable for the analysis of other
high-dimensional data, such as for single-cell RNA sequencing (4,
5) or pre-existing large statistical datasets.
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FIGURE 6. Diverse subpopulations of human peripheral Tregs. CD4+ T cells with Treg-related function (FOXP3, CD25, CD39, CTLA-4, IL-10, and

LAG-3) were exported and combined by Boolean gating. (A) Cells were analyzed by One-SENSE using the “Tregness” dimension against all other

markers. Several functional Treg-like subsets are revealed by One-SENSE and separated by cis coexpression of different functional Treg markers. (B) Two

Treg-like subsets (4 and 5) can be further dissected into multiple subpopulations by other functional or localization markers.
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