
Fast Optimization for t-SNE

Laurens van der Maaten
Department of Computer Science and Engineering, University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093, USA
Pattern Recognition & Bioinformatics Lab, Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
lvdmaaten@gmail.com

Abstract

The paper presents an alternative optimization technique for t-SNE that is orders
of magnitude faster than the original optimization technique, and that produces
results that are at least as good.

1 Introduction

An important problem in the visualization of objects is how to construct a low-dimensional scatter
plot in which each object is modeled by a single point, and in which the pairwise distances between
points reflect the pairwise dissimilarities between their corresponding objects. Many techniques for
dimensionality reduction and multidimensional scaling have been designed with this goal in mind;
see, e.g., [1, 2, 3] for an overview. Recently, a technique called t-Distributed Stochastic Neighbor
Embedding (t-SNE) has gained popularity. In particular, it has been successfully applied to visualize,
among others, documents [4], optimization procedure trajectories [5], breast cancer CADx data [6],
linguistic data [7], paintings [8], and data on malicious software [9, 10].

One of the main disadvantages of t-SNE is that it is computationally expensive; the visualization of
a typical data set with 5, 000 objects can take up to 30 minutes, even using advanced implementa-
tions running on high-end hardware. The high computational expenses of performing t-SNE limit its
applicability: in many domains, data analysts want to quickly construct a visualization, change one
or more parameters underlying the objects’ pairwise similarities, and quickly construct a new visu-
alization to evaluate the result of the parameter change, etc. Such interactions with the visualization
technique are hampered by long waiting times for the construction of the visualizations.

In this paper, we aim to address the high computational costs of t-SNE by presenting an alternative
optimization technique for t-SNE that is orders of magnitude faster than the original t-SNE optimizer
proposed in [11], whilst constructing solutions that are just as good in terms of the objective function.

2 t-Distributed Stochastic Neighbor Embedding

The input of t-SNE consists of a collection of pairwise (Euclidean) distances δij between the n

input objects, that are converted into conditional probabilities as pj|i =
exp(−δ2ij/2σi)∑

k 6=i exp(−δ2ik/2σi)
(where

pi|i = 0 and σi is set in such a way as to obtain conditional probability distributions with a fixed
perplexity), which are in turn symmetrized to obtain a joint probability matrix P over pairs of points
with entries pij =

pj|i+pi|j
2n . Pairwise distances between points yi in the map of the input objects

are converted into a joint probability matrix Q in a similar way, but instead of Gaussian densities,
densities under a Student-t distribution are employed

qij =
(1 + ‖yi − yj‖2)−1∑

k

∑
l 6=k(1 + ‖yk − yl‖2)−1

. (1)

1

The map points yi are laid out in such a way as to minimize the Kullback-Leibler divergence be-
tween the joint probability distributions P and Q, i.e., the objective function C(Y) = const −∑
i

∑
j 6=i pij log qij . In the original paper [11], the optimization is performed using a gradient de-

scent optimizer that uses momentum and a delta-bar-delta scheme [12] to update the learning rate.

3 New Optimization Technique

The gradient of the t-SNE cost function is given by

∂C(Y)

∂yi
= 4

∑
j 6=i

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1. (2)

Denoting the graph Laplacian of the matrix P by LP = diag(
∑
j pij)−P and the graph Laplacian

of Q by LQ = diag(
∑
j qij)−Q, the gradient can be rewritten as

∂C(Y)

∂Y
= 4W ◦ (LP − LQ)Y

T, (3)

where ◦ represents an element-wise product, and where W represents a matrix with weights wij =
(1 + ‖yi − yj‖2)−1. An important advantage of this way of writing the gradient is that the main
computation consists of a matrix multiplication of two matrices, which facilitates the use of highly
optimized BLAS implementations such as those in Intel MKL or CUBLAS.

Setting the t-SNE gradient to zero, we can investigate several splits in an attempt to identify a fixed
point iteration for t-SNE. For instance, we can consider

4W ◦ (LP − LQ)Y
T = 0 (4)

(W ◦ LP)YT = (W ◦ LQ)YT (5)

Y = Y(W ◦ LP)−1(W ◦ LQ). (6)

We also investigated several other splits, but we focus on this split in the paper as it works best
in practice. Unfortunately, the update rule derived above is not a fixed point iteration, and neither
is any of the other splits we investigated. In other words, there is no guarantee that the update
decreases C(Y) at every iteration. However, the update rule derived above does suggest a good
search direction that can be used instead of the gradient direction, viz. the search direction

D = Y(W ◦ LP)−1(W ◦ LQ)−Y, (7)

where we note that the matrix inversion does not need to be computed explicitly; instead, we can
use an off-the-shelf linear system solver to compute the above search direction. A similar search
direction is also used in a dimensionality reduction technique called “elastic embedding” [13].

Although the update rule derived above does not always decrease the value ofC(Y), the correspond-
ing search direction never becomes orthogonal (or obtuse) to the true gradient, i.e., the directional
derivative of the search direction always remains negative. Hence, as a result of Zoutendijk’s theo-
rem [14], we are guaranteed to converge to a local optimum of C(Y) if we use the search direction
in combination with a linesearch that satisfies the Wolfe conditions, i.e., a linesearch that satisfies

C(Y + αD) ≤ C(Y) + c1α
∑
i

∑
j

dij
∂C(Y)

∂yij
, (Armijo condition), (8)

∑
i

∑
j

dij
∂C(Y + αD)

∂yij
≥ c2

∑
i

∑
j

dij
∂C(Y)

∂yij
, (curvature condition), (9)

where α is the step size we aim to determine, and c1 and c2 are free parameters.

4 Experiments

We performed experiments on the MNIST data set, in which we compare the optimizer that uses
the search direction D and a Wolfe linesearch algorithm with the optimizer proposed in the original

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

1600

1800

Number of data points

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Original t−SNE

Fast t−SNE

(a) Computation time.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of data points

t−
S

N
E

 e
rr

o
r

Original t−SNE

Fast t−SNE

(b) Lowest cost function.

Figure 1: Required computation time and lowest cost function value achieved as a function of the
number of instances; for both optimizers.

t-SNE paper [11]. Both optimizers were implemented in Matlab. Profiling of both implementations
revealed that over 95% of all computation time is in computations that are implemented by BLAS
and LAPACK; hence, we may safely ignore the overhead from the Matlab calls and can readily
compare computation times.

In the experiments with both implementations, we initialized the maps Y using PCA. The original
t-SNE optimizer uses 1, 000 iterations of gradient descent with a momentum of 0.5 during the first
250 iterations and a momentum of 0.8 afterwards, as well as a delta-bar-delta scheme [12] for the
step size η with a starting value of α = 500. We did not employ the “early exaggeration” trick [11]
to facilitate a fair comparison of the cost function values over time. The t-SNE optimizer proposed
in this paper uses an off-the-shelf Wolfe linesearch algorithm that uses bracketing with a cubic
interpolation/extrapolation method that employs both function and gradient values [15] (using a
maximum number of 10 function evaluations per linesearch). The Armijo update parameter was set
to c1 = 0.02, whereas the curvature parameter was set to c2 = 0.9. The optimization is continued
until the step size α becomes smaller than 10−5, until the improvement of the cost function value is
smaller than 50−4, or until a preset maximum of 50 iterations is reached. A Matlab implementation
of the new optimizer is available from http://homepage.tudelft.nl/19j49/t-SNE.
html.

We performed experiments for various number of instances (ranging from 100 to 5, 000), and we
heuristically set the perplexity-values for each experiment to a suitable value. In order to make the
comparison as fair as possible, we excluded the PCA computations as well as the computation of
the matrix P from the measurement of computation times, hence, we only measure the computation
time required for the actual optimization. Computation times were measured on an Intel Core i7
2.66 GHz mobile processor.

The required computation time for both optimizers as a function of the number of instances is shown
in Figure 1(a). The figure reveals the strong performance of the new optimizer: whereas the com-
putation time consumed by the original optimizer roughly grows quadratically with the number of
instances, the new optimizer appears to scale nearly linear in the number of instances (even though its
worst-case performance is O(n3)). In Figure 1(b), we show the lowest cost function value achieved
by both optimizers as a function of the number of instances1. The figure reveals that, despite being
orders of magnitude faster on larger data sets, the new optimizer does construct solutions of the same
quality in terms of the t-SNE cost function.

In Figure 4, we plot the value of the t-SNE cost function as a function of computation time for both
optimizers. The plot presents results for the visualization of 5, 000 MNIST digits. It underlines the
rapid convergence of the new optimizer compared to the original t-SNE algorithm.

1Note that cost values tend to increase with the number of instances.

3

0 200 400 600 800 1000 1200 1400 1600 1800
1

1.5

2

2.5

3

3.5

Computation time (s)

t−
S

N
E

 e
rr

o
r

Original t−SNE

Fast t−SNE

Figure 2: Value of the t-SNE cost function as a function of computation time (for the visualization
of 5, 000 MNIST digits); for both optimizers.

5 Concluding Remarks

We proposed a new optimizer for t-SNE that uses an alternative search direction in combination with
a Wolfe linesearch algorithm. The new optimizer is orders of magnitude faster than the original t-
SNE optimizer, whilst producing similar results. All computation time in the new optimizer is spent
on matrix multiplication and linear system solving, as a result of which we expect large additional
speed-ups are possible by implementing the algorithm in CUDA. We leave such an implementation
to future work.

Acknowledgements

The author thanks Miguel Carreira-Perpiñán, Geoffrey Hinton, Fei Sha, and Lawrence Saul for
helpful discussions on optimization and dimensionality reduction.

References
[1] C.J.C. Burges. Dimension reduction: A guided tour. Foundations and Trends in Machine Learning,

2(4):1–95, 2010.

[2] J.A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer, New York, NY, 2007.

[3] L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. Dimensionality reduction: A comparative
review. Technical Report TiCC-TR 2009-005, Tilburg University, 2009.

[4] S. Lacoste-Julien, F. Sha, and M.I. Jordan. DiscLDA: Discriminative learning for dimensionality re-
duction and classification. In Advances in Neural Information Processing Systems, volume 21, pages
897–904, 2009.

[5] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised
pre-training help deep learning? Journal of Machine Learning Research, 11(Mar):625–660, 2010.

[6] A.R. Jamieson, M.L. Giger, K. Drukker, H. Li, Y. Yuan, and N. Bhooshan. Exploring nonlinear feature
space dimension reduction and data representation in breast CADx with Laplacian Eigenmaps and t-SNE.
Medical Physics, 37(1):339–351, 2010.

[7] Y. Mao, K. Balasubramanian, and G. Lebanon. Dimensionality reduction for text using domain knowl-
edge. In Proceedings of the 23rd International Conference on Computational Linguistics, pages 801–809,
2010.

[8] L.J.P. van der Maaten and E.O. Postma. Texton-based analysis of paintings. In SPIE Optical Engineering
and Applications, volume 7798-16, 2010.

[9] I. Gashi, V. Stankovic, C. Leita, and O. Thonnard. An experimental study of diversity with off-the-shelf
antivirus engines. In Proceedings of the IEEE International Symposium on Network Computing and
Applications, pages 4–11, 2009.

[10] O. Thonnard, W. Mees, and M. Dacier. Addressing the attack attribution problem using knowledge
discovery and multi-criteria fuzzy decision-making. In Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics, pages 11–21, 2009.

4

[11] L.J.P. van der Maaten and G.E. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(Nov):2431–2456, 2008.

[12] R.A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks, 1:295–
307, 1988.

[13] M.Á. Carreira-Perpiñán. The elastic embedding algorithm for dimensionality reduction. In Proceedings
of the 27th International Conference on Machine Learning, pages 167–174, 2010.

[14] G. Zoutendijk. Methods of Feasible Directions. Elsevier Publishing Company, Amsterdam, The Nether-
lands, 1960.

[15] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.

5

