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Abstract

The interpretation of biological data sets is essential for generating hypotheses that guide research, yet modern methods of
global analysis challenge our ability to discern meaningful patterns and then convey results in a way that can be easily
appreciated. Proteomic data is especially challenging because mass spectrometry detectors often miss peptides in complex
samples, resulting in sparsely populated data sets. Using the R programming language and techniques from the field of
pattern recognition, we have devised methods to resolve and evaluate clusters of proteins related by their pattern of
expression in different samples in proteomic data sets. We examined tyrosine phosphoproteomic data from lung cancer
samples. We calculated dissimilarities between the proteins based on Pearson or Spearman correlations and on Euclidean
distances, whilst dealing with large amounts of missing data. The dissimilarities were then used as feature vectors in
clustering and visualization algorithms. The quality of the clusterings and visualizations were evaluated internally based on
the primary data and externally based on gene ontology and protein interaction networks. The results show that t-
distributed stochastic neighbor embedding (t-SNE) followed by minimum spanning tree methods groups sparse proteomic
data into meaningful clusters more effectively than other methods such as k-means and classical multidimensional scaling.
Furthermore, our results show that using a combination of Spearman correlation and Euclidean distance as a dissimilarity
representation increases the resolution of clusters. Our analyses show that many clusters contain one or more tyrosine
kinases and include known effectors as well as proteins with no known interactions. Visualizing these clusters as networks
elucidated previously unknown tyrosine kinase signal transduction pathways that drive cancer. Our approach can be
applied to other data types, and can be easily adopted because open source software packages are employed.
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Introduction

Cell behavior is controlled by functional interactions among

biological molecules, which have been classically studied one at a

time, and communicated with pathway diagrams or cartoons.

Signaling networks are actually much more complicated than

these simple models, as revealed by large-scale approaches to

studying the genome, transcriptome, and proteome. These studies

produce a large amount of data that are difficult to comprehend

prima facia. To overcome this problem, a combination of statistical

analysis and visualization techniques may be helpful [1–4].

A major challenge when dealing with large data sets is how to

resolve relationships in the data, and display results in a

meaningful way for exploration, presentation, and ultimately,

comprehension of the dynamics of cell responses in diseased states

and normal differentiation [3]. Much work has been done on

exploratory data analysis and inferential statistics [5], and on the

‘‘network’’ metaphor, which describes relationships between

biological molecules [6]. Hierarchical clustering dendrograms,

heat maps, and network graphs have been employed in attempts to

visualize patterns that may indicate functional relationships among

different groups within data. It is widely acknowledged that high-

throughput characterization technologies will benefit from im-

proved visualization and bioinformatic tools [7], and this is

particularly true for phosphoproteomic data analysis [4,8,9].

Higher resolution of data structure and computer visualization

could be particularly helpful for studies exploring the phosphor-

ylation of cellular proteins. Phosphoproteomic techniques have

become increasingly effective in identifying proteins in recent

years. Comprehending the resulting data, however, is difficult,

both because of the dynamic nature of cell signaling, and because

signaling displays many overlaps and great redundancy [10,11].

To understand these data and transcend limitations imposed by

representing signal transduction as linear pathways, there is a clear

need for tools and methods that integrate data analysis and

graphing [2,12]. The tools should enable investigators to select

statistical techniques with appropriate underlying assumptions for

the type of data being analyzed, and visualize results in a way that

suggests hypotheses for further data collection and experiments.

One consideration that is especially important when analyzing

proteomic mass spectrometry data is how missing values are

handled. With careful application of high-resolution instruments,

mass spectrometry has a very low false positive rate [13], which

means that we may have high confidence in data where proteins

are identified. Nonetheless, the false negative rate is likely to be

high and in phosphoproteomic analysis is subject to the extent of
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optimized sample enrichment [14], peptide fractionation [15,16],

phosphorylation site stoichiometry [17] and the mass spectrometer

resolution, with recent improvements aiming to minimize the

fraction of peptides in complex samples that miss the detector [18].

Most commonly used software tools for statistical analyses, such as

k-means or hierarchical clustering, require an imputation ap-

proach to deal with missing data. Imputing zeros as placeholders

to represent the lack of data is a very simple approach that is often

used. Imputing zeros is inappropriate for these data, however,

because zero values influence the statistical calculations when they

are treated as data. Alternative methods to estimate missing values

based on previous data have been described, but these methods

are suitable when only a few values are missing [19–21], or when

very strong assumptions can be made on the covariance structure

of the data [22,23] that are unrealistic for proteomic data. It is

unreasonable to make inferences about missing values using these

methods in phosphoproteomic data because there may be more

missing values than data. Therefore, the most direct approach is to

calculate statistical relationships using only the observed variables

and to ignore all missing variables. We used this approach as a

starting point to seek improved methods for resolution of data

structure, which we applied to phosphoproteomic data from lung

cancer samples [24]. This approach significantly improved the

resolution of clusters identified in sparse data sets typical of

proteomic studies. Moreover, our analysis of gene function

annotations and protein-protein interactions within clusters

suggested several novel cancer driver pathways and potential links

between these pathways and proteins that have not previously

been characterized.

Results

Embedding and Clustering Methods
Groups of proteins phosphorylated in the same samples may

indicate signaling pathways activated in different classes of tumors,

so it is worthwhile to attempt to find clusters defined by statistical

methods in phosphoproteomic data. Phosphoproteomic data from

Rikova et al. [24] were reexamined to elucidate relationships

between proteins phosphorylated in lung cancer samples that were

not previously appreciated. This dataset, which comprises tyrosine

phosphorylated proteins from 41 non-small cell lung cancer

(NSCLC) cell lines and over 150 NSCLC tumors, was converted

to a table of 2482 genes by 233 samples, is particularly challenging

for clustering algorithms because 95.7% of table cells contain no

data. Many proteins were identified only in subsets of samples, and

we cannot know whether these are truly absent or simply not

detected. Use of zeros to represent no data would obscure

statistical calculations because all the zeros correlate with each

other. Our approach with R software allowed us to explore the use

of NA (interpreted as data not available) as a value that was more

appropriate than zero to represent the absence of data.

We analyzed the data with or without imputing zeros for NAs

using two commonly used statistical measures of distance: Pearson

or Spearman distance, which is one minus the absolute value of

the Pearson or Spearman correlation between each protein and

every other protein, and Euclidean distance, which measures the

relative closeness in multidimensional space of each protein to

every other protein. Pearson and Spearman correlations were very

close to one another, so Spearman was used for subsequent

analyses. Conversion of the data into statistical distance allows no

relationship (a distance of NA) to be set to an arbitrarily large

value (100 times maximum real distance between any two

proteins; see Materials and Methods). Distance matrices were

then converted using multidimensional scaling to Cartesian

coordinates in two or three dimensions to visualize data structure

(Figures 1 and S1). Using NAs to represent missing values gave rise

to data structures (Figure 1, blue points) that were much more

highly resolved than those where zeros replaced NAs (Figure 1, red

points).

Three-dimensional statistical data structures resolved by Spear-

man (Figure S1 A, B) and Euclidean (Figure S1 C, D) distance

were very different from each other because they employ distinct

methods to calculate statistical relationships. Some proteins that

were not well resolved by one method were separated by the other,

suggesting that a combination of these two methods should further

resolve the data. Combining different sources of dissimilarity has

been found to be useful in pattern recognition since different

dissimilarity measures may emphasize different types of informa-

tion [25]. The scaled sum of Spearman and Euclidean distance,

derived from calculations with NAs to represent the absence of

data, was represented as two or three dimensional Spearman-

Euclidean Dissimilarity (SED) (Figure S1, E, F; Figure S2, A, B;

Movie S1).

Evaluation of Clustering Methods
We asked whether different clustering algorithms could discern

relationships in these data. Graphs of data structure produced by

multidimensional scaling, in which node size and color represented

the total amount of phosphopeptides, suggested relationships

among proteins that could be appreciated by manual exploration

of the data structure in Cytoscape (Figure S1). Exploration and

selection of clusters based on proximity within the data structure in

three dimensions using PyMOL was also possible (Figure S2,

Movies S1, S2; see below). Because manual selection of clusters in

large data structures is laborious, we evaluated automated

selection of clusters using k-centers, k-means, and multidimension-

al scaling and t-distributed stochastic neighbor embedding (t-SNE,

ref. [26]) using the minimum spanning tree method to select

groups based on proximity.

To evaluate clusters, an index was calculated from the original

data that measured the density of data and number of genes that

fitted the overall pattern of expression in each cluster (see

Materials and Methods and Table 1).This index ranked clusters

containing commonly phosphorylated proteins higher than

clusters more sparsely populated with data (higher percent NA,

Table 1). Based on this benchmark, the most effective clustering

method was the minimal spanning tree method in the t-SNE

embedded space. t-SNE is a new pattern recognition technique

that aims to model the local structure of the data in a single map

whilst ensuring that dissimilar groups of point are modeled far

apart [26]. Figure 2 compares clusters identified by minimal

spanning tree in multidimensional scaling (A) and t-SNE (B)

embedded space from the Spearman-Euclid dissimilarity. (Fig-

ure S3 shows two-dimensional t-SNE graphed in Cytoscape;

Figure S2C, D and Movies S1, S2 shows three-dimensional t-SNE

embedding graphed using PyMOL.) Empirically, we found that t-

SNE resolved clusters from the combined Spearman-Euclid

dissimilarity more effectively than from either Spearman or Euclid

dissimilarity alone (highest sum Index, Table 1). In general, cluster

membership defined by different methods increasingly diverged

when grouping proteins that were more sparsely represented in the

data. Clusters were resolved most effectively when the distance

matrix was treated as a ‘‘feature vector’’ in a so-called dissimilarity

representation (compare Method: dissimilarity vs. distance,

Table 1) [27]. Clustering methods applied to the raw data, or to

data where zeros represented the absence of data, were not

successful (not shown); they converged on only one large cluster,

leaving a number of individual proteins.

Data Wrangling Methods for Proteomics
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Figure 1. Comparison of two-dimensional Euclidean (A) and Spearman (B) distance matrices calculated from data where NAs (blue
points) or zeros (red points) were used to represent the absence of phosphoproteomic mass spectrometry signals. Data are plotted
on the same scale in the main graphs; insets show the scale and distribution of nodes from distance matrices calculated from data using zeros to
represent no signals.
doi:10.1371/journal.pone.0052884.g001
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Data Wrangling
The concept of ‘‘fuzzy clustering’’ embraces the notion that

membership in more than one group is possible. Unfortunately,

fuzzy c-means clustering resolved only a few distinct clusters

containing less than 10% of the proteins in the data set (see Table 1

legend). Though this particular clustering technique proved to be

of limited use for these data, the concept of fuzzy or overlapping

boundaries between clusters is nevertheless important to keep in

mind when examining clusters determined by any method.

Membership in individual clusters identified from hard clustering

methods on Spearman, Euclidean, or SED embedding split in

different ways clusters that contain even the most statistically well-

represented proteins (Figure S4). We seek to appreciate patterns of

tyrosine phosphorylation to elucidate different pathways that may

drive or be active in different types of lung cancer. While it is

worthwhile to carefully determine which sets of proteins are most

often co-activated, tyrosine phosphorylated proteins found in

many samples may be activated by multiple overlapping pathways,

and one or more downstream effectors may be activated by more

than one tyrosine kinase [28,29]. Thus, assignment of proteins to

one cluster should not be viewed as evidence for excluding it from

participating in a signaling pathway identified in another cluster.

With this in mind, we investigated how data-driven analyses

coupled with hypothesis-driven interrogation and filtering may be

used to glean more information from the lung cancer data set. We

hypothesized that the presence of one or more tyrosine kinases in

individual clusters implicates those kinases in pathways (whether

direct or indirect) that cause tyrosine phosphorylation of other

proteins in that cluster. Thus, we provisionally identified clusters

by tyrosine kinases, where present. Clusters that contained the

most highly phosphorylated proteins in these data contained FAK

(PTK2), LCK, LYN, FYN, DDR1 and EGFR. We focussed on

these clusters, and two other clusters containing ALK and MET,

for detailed investigation. We evaluated and filtered clusters based

on internal criteria, that is, based on the primary data, and

external criteria from protein interaction and gene ontology (GO)

databases [30–32].

To evaluate the validity of clusters, we examined the subset of

the primary data contained within them. We focused on the

clustering methods that performed well according to the criteria

defined in Table 1. Data were graphed as heat maps sorted by

descending phosphopeptide contents. The sorted heat map, which

can be considered a three-dimensional histogram with the z-

dimension representing quantity by a color scale, provides an

overview to evaluate conformity to a similar pattern in the primary

data. Clusters containing the most highly represented proteins in

the lung cancer data are shown in Figures S4 and S5. Clusters

were also evaluated using the index that measures data density as

described above (Table 2). FAK (PTK2) and LCK were grouped

together with MAPK14 (p38a) and GSK3A (which was present in

all samples) by all measures except Spearman (Figure S4C;

Table 2, Spearman t-SNE group 108). Clusters containing EGFR

were also largely similar, grouping EGFR with DDR1, LYN, and

FYN (Figure S5), except that k-means on Euclidean embedding

grouped EGFR with the FAK-LCK cluster (Figure S4A; Table 2,

Euclid k-means group 56). Despite these exceptions, there was

significant agreement among different clustering methods for the

most highly represented proteins in the data set.

Different embedding (Spearman vs. Euclidean) produced

overlapping but distinct clusters, and the combined (SED)

embedding produced a reasonable consensus view (Figure S4D,

S5D). Considering that both Spearman and Euclidean dissimilar-

ity define clusters that are statistically meaningful, we also

combined them in a different way, by merging overlapping

groups after clustering, then filtering. Applying this approach to

the FAK-LCK group (Figure S4E) returns a cluster very similar to

the SED cluster (Figure S4D). Similarly, there was good agree-

ment comparing the EGFR cluster when Spearman and Euclidean

embedding was combined before (Figure S5D, SED t-SNE) or

after (Figure S5E) the clustering algorithm was performed. These

results suggested that combining Spearman and Euclidean

embeddings either before or after clustering is useful to represent

a consensus view of clusters. The SED (t-SNE) FAK (PTK2)

cluster (Figure S4D) and the combined Spearman and Euclidean

EGFR cluster (Figure S5E) were graphed as networks in Figure 3,

incorporating data from protein interaction databases as edges

(explained in External Evaluations, below).

One important goal of detailed analysis of large data sets is to

uncover new mechanisms or signaling pathways. MET, the

Figure 2. Spearman-Euclidean dissimilarity (SED) reduced to
two dimensions by multidimensional scaling (A) or t-SNE (B).
100 clusters were selected by single linkage minimum spanning trees.
Red circles are drawn around the clusters.
doi:10.1371/journal.pone.0052884.g002
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receptor tyrosine kinase for hepatocyte growth factor (HGF) has

been shown to drive tumorigenesis when overactivated in a

number of cancers, including lung cancer [33]. Anaplastic

lymphoma kinase (ALK) is an important oncogenic driver, yet is

less well studied than many other receptor tyrosine kinases (RTKs)

[34]. Cluster membership for clusters identified from the data

examined here containing MET and ALK were more varied when

different methods were used (Figures S6,S7,S8, Table 2). Clusters

containing MET ranged in size from 8 to 162 proteins, with little

overlap (Table 2, Figure S6). None of the clusters identified

automatically appeared to be particularly compelling based on

internal evaluations, however, combining clusters from t-SNE on

Euclidean (Figure S6B) and Spearman (Figure S6C) embedding,

then filtering, defined a reasonably-sized cluster that made the

most sense by internal evaluations (Figure 4, low percent NA,

Table 2). This cluster identified collaboration of the RTKs

EPHA2, ERBB2, and ERBB3 with MET, which may provide

additional targets for metastatic lung tumors.

Phosphorylated ALK was detected in a smaller number of

samples in the data set examined, which creates a difficult

statistical problem that requires a combination of approaches to

yield potential biological insight. The k-means cluster didn’t

contain proteins whose pattern of phosphorylation in the primary

data was well correlated (Figure S7A), and the SED (t-SNE)

cluster containing ALK was very large, containing a number of

sparsely-identified proteins (Figure S7D). The only genes with

similar cluster patterns between t-SNE Euclid and Spearman

clusters were ALK and EML1 (Figure S7B, C). We therefore

experimented with different approaches to combine and filter

clusters.

ALK and Echinoderm microtubule associated protein like 4

(EML4) were correlated in 6 samples, which was identified in the

Spearman (t-SNE) cluster (Figure S7C). This was noted by

Table 1. Evaluation of clustering methods.

Method
sum percent
NA

sum percent single
sample genes

sum percent single
gene samples max Index sum Index

2D t-SNE Spearman-Euclid dissimilarity 5,524 5,567 7,057 3,455,483 4,716,675

3D t-SNE Spearman-Euclid dissimilarity 5,887 5,275 6,538 3,455,483 4,185,719

k-means Euclid dissimilarity 7,401 4,577 5,824 3,737,163 4,055,601

2D t-SNE Spearman dissimilarity 5,797 1,300 6,040 3,506,440 3,986,267

2D t-SNE Pearson dissimilarity 5,616 1,200 5,825 3,506,440 3,957,852

k-means Spearman-Euclid dissimilarity 7,129 5,205 5,880 3,484,358 3,814,431

k-means Spearman dissimilarity 7,379 300 6,208 3,371,621 3,708,254

2D t-SNE Euclidean dissimilarity 6,536 5,715 6,772 3,094,294 3,234,739

3D t-SNE Euclidean dissimilarity 7,268 5,287 6,295 3,094,294 3,222,101

3D t-SNE Spearman dissimilarity 3,968 4,200 7,202 2,438,734 2,935,132

2D t-SNE Pearson correlation 6,066 400 5,730 405,600 1,064,420

3D t-SNE on 3D MDS of Spearman-
Euclid dissimilarity

6,256 7,304 5,895 445,093 939,504

3D t-SNE on 10D MDS of Spearman-
Euclid dissimilarity

5,511 7,813 6,178 378,635 881,679

k-centres Spearman distance 2,639 6,598 7,814 512,751 805,529

MDS on 3D Spearman-Euclid distance/
dissimilarity

2,067 6,315 8,620 741,469 752,509

MDS on 2D Spearman-Euclid distance/
dissimilarity

3,075 5,683 8,065 322,357 601,140

k-centres Spearman-Euclid distance 2,902 7,443 7,805 81,814 347,522

k-centres Euclid distance 3,741 2,420 2,761 97,650 253,401

Data ere sorted by sum Index. The Index used for cluster evaluation was defined as.
Index = intensity * (1 + realsamples) * (1 + cleargenes)/(1 + percent NA).
Where
intensity = total signal – (total signal * percent NA/100).
cleargenes = no. genes – genes culled by slope.
realsamples = no. samples – (no.samples * percent single gene samples/100).
Single gene samples is the number of cases where a sample in the cluster contains only one gene. Single sample genes is the number of cases where a gene in the
cluster is represented in only one sample. The ‘‘culled by slope’’ function sorts genes and samples from largest to smallest within each cluster and measures the slope of
the regression line for each gene in all the samples. If the slope is negative, the gene follows the general pattern in the cluster. If the slope is positive, the gene is more
highly expressed in different samples than the rest of the group, and is culled. Data are sorted by sum Index, which is the sum of all Index values from 100 clusters.
100 clusters were resolved by each method for comparison. MDS = multidimensional scaling. t-SNE = t-distributed stochastic neighbor embedding. t-SNE was not
effective when attempting to preserve distance from distance matrices (not shown), but it was very effective when treating data as a feature vector representation of
dissimilarity. t-SNE was used to create maps reduced to 2 or 3 dimensions. Minimum spanning tree, single linkage method was used to resolve clusters from MDS and t-
SNE.
26–30 clusters were identified from fuzzy c-means scores by selecting membership by scores greater than the mean score plus 2.5 times the standard deviation (not
shown). All but 11 of these clusters were similar, containing 100–140 of the most highly represented proteins in the data set with a mean overlap of about 40 proteins.
Only 200–232 of 2482 genes were grouped into clusters by this method.
doi:10.1371/journal.pone.0052884.t001
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Rikova, et al., who elegantly proved that a chromosomal

translocation produced a hybrid ALK-EML4 gene in a subset of

cases, creating an oncogene analogous to nucleophosmin-anaplas-

tic lymphoma kinase (NPM-ALK), which drives anaplastic large-

cell lymphomas [24,34,35]. There are more cases, however, where

EML4 was detected and ALK was not (Figure S8A), and cases

where ALK was detected and EML4 was not (Figure S8B). In

addition, there are a number of proteins identified in one sample

that contains EML4 but not ALK (H3255, Figure S8A, B). These

data affected Euclidean dissimilarity more than Spearman, and

thus mask potentially interesting relationships. A more informative

clustering was produced by first combining clusters from different

methods (Figure S8C), and then filtering for ALK and proteins

present at least twice (Figure 5).

Because the methods to identify ALK and MET clusters

(Figures 4 and 5) involved several steps beyond clustering

algorithms, that is, combining clusters and filtering in various

ways, we describe these methods as ‘‘data wrangling.’’ This term is

intended to denote some curating of the data into groups using

quantitative filters, starting with clusters identified by automatic

methods. To further validate these methods, we examined clusters

using external evaluations.

External evaluations
Clusters identified from statistics containing proteins that

physically interact are likely to represent functional signaling

networks. Protein interaction and GO data retrieved from external

databases were used as additional measures of the biological

significance and validity of clusters identified above. These

databases are incomplete works in progress [36,37], nevertheless

if the clusters implicate real pathways they will be more likely than

a random selection of genes from the dataset to show interactions

and functional synergy. As a control, we randomly selected 11 to

34 proteins from the dataset (the size of clusters we deemed

informative) and determined the average number and weight of

edges that represent evidence for physical or genetic interactions

for random clusters (see Materials and Methods). The networks

shown in Figures 3 and 4B all had more than sixty-fold more edges

(and 500-fold more edge weight) over background from randomly

selected proteins (see Figures 3 and 4 legends).

We used random clusters to determine the background GO

term enrichment, which was about one enriched GO term for

every three genes selected randomly from the lung cancer data set

(see Materials and Methods). This relatively high background for

Table 2. Summary of key clusters.

Kinase Method Group Rank
no.
genes

percent
single
sample
genes

no.
samples

percent
single
gene
samples

total
signal

percent
NA Index

FAK(PTK2) Spearman t-SNE 51 1 14 0 233 0 6,340 5 3,506,440

FAK(PTK2) SED t-SNE 71 1 18 0 233 0 7,086 7 3,455,483

FAK(PTK2) Combined Filtered NA NA 13 0 233 0 6,346 8 2,077,545

FAK(PTK2) Euclid k-means 56 1 30 0 233 0 9,572 14 3,737,163

LCK Spearman t-SNE 108 3 8 0 232 4 1,291 28 64,074

FAK(PTK2) Euclid t-SNE 37 1 42 0 233 0 9,548 33 1,932,687

EGFR Combined Filtered NA NA 12 0 232 0 2,770 32 175,211

EGFR Spearman t-SNE 22 2 22 0 233 1 3,266 38 279,034

EGFR SED t-SNE 14 2 33 0 233 0 4,566 42 465,278

DDR1 Euclid k-means 9 2 23 0 232 2 3,041 43 205,086

EGFR Euclid t-SNE 14 2 23 0 231 0 3,132 44 209,573

MET Combined Filtered NA NA 30 0 46 0 919 42 17,714

MET Spearman t-SNE 76 7 8 0 161 24 419 56 3,627

MET Euclid k-means 17 5 23 0 213 17 890 74 9,332

MET SED t-SNE 40 5 14 0 168 36 386 77 1,630

MET Euclid t-SNE 12 3 162 0 229 3 3,207 86 120,157

ALK Combined Filtered NA NA 26 0 9 0 79 62 78

ALK Spearman t-SNE 44 43 9 0 48 71 61 79 24

ALK Euclid k-means 54 18 18 0 103 50 92 88 92

ALK Euclid t-SNE 52 19 23 35 83 63 79 91 35

ALK SED t-SNE 28 12 175 62 155 40 264 98 229

EML4 SED t-SNE 121 19 4 0 73 67 56 63 40

EML4 Euclid k-means 55 19 20 0 103 59 93 90 82

EML4 Euclid t-SNE 40 25 55 42 75 65 77 96 12

Data were sorted by increasing percent NA for each group, identified by the most well-represented tyrosine kinase in the cluster, except for EML4{, which is not a
kinase, but shown here because it was found to be linked in a chromosomal translocation to the tyrosine kinase domain of ALK [24]. Clusters were evaluated as
described in Table 1 and Materials and Methods. Those identified by automated techniques using dissimilarity as a feature vector are labelled. Clusters determined by
combining and filtering are identified as ‘‘Combined Filtered.’’ Rank refers to the rank by Index comparing groups from that particular method; Group is the identifier
number.
doi:10.1371/journal.pone.0052884.t002
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Figure 3. Networks from clusters containing the most highly tyrosine phosphorylated proteins in lung cancer samples. A) Cluster
containing LCK and FAK (PTK2) derived from t-SNE on SED embedding (Figure S4D). B) Cluster containing EGFR and LYN, derived from first
performing t-SNE Spearman and Euclidean embedding separately, then combining these clusters and filtering (Figure S5E). Node size and color
(white to yellow) indicates the total number of phosphopeptides detected in all samples. Edges are protein interaction data from String
(string.embl.de/), GeneMANIA (genemania.org/), and the kinase-substrate data from PhosphoSitePlus (phosphosite.org). For clarity, since graphs of
these clusters including all individual edges were difficult to interpret, edges were merged, and edge weights, which indicate the strength of
evidence for interaction, were summed to determine the thickness of the edge line. Protein interaction network data was imported into R for the
edge merge and plotted with RCytoscape as described in Materials and Methods. Node position in network graphs was set using an edge-weighted,
spring-embedded layout in which highly connected nodes group closer together. The cluster in (A) had 107-fold more edges, 544-fold greater edge
weight, and 7.5-fold more GO terms retrieved than the average random cluster. The cluster in (B) had 88-fold more edges, 499-fold greater edge
weight, and 10.8-fold more GO terms retrieved than the average random cluster. As an additional measure, the number of edges expected from these

Data Wrangling Methods for Proteomics
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GO term enrichment indicates that GO terms for the clusters

should be interpreted with caution. Nonetheless, the number of

GO terms retrieved were more than five-fold over background for

FAK (PTK2), EGFR, and MET networks (Figures 3 and 4). A

summary of GO terms for these clusters, and all clusters identified

by t-SNE on SED 2D embedding (cluster membership and GO

summary tables, available online), revealed links to many

signaling, metabolic, and growth-control process in the FAK

(PTK2) group, implicating these proteins as hubs of signal

integration for many lung cancer signaling pathways. The EGFR

cluster also had links to signal transduction and growth control,

and also to differentiation. In contrast, the MET cluster had many

more links to cell migration, control of actin organization, and

adhesion, suggesting a role for these proteins in metastasis.

Proteins in the ALK cluster are not as well-studied, and the

ALK cluster GO terms were not significantly increased over

background, yet eleven-fold more edges (and ten-fold more edge

weight) were present in the ALK network compared to random

proteins (Figure 5). The observation that eleven-fold more edges

(and ten-fold more edge weight) were present in the ALK network

compared to random proteins indicated that the ALK cluster is

worthy of further investigation.

Co-activation of tyrosine kinases in lung cancer
31 of the 58 RTKs in the human genome were detected in this

dataset, and all nine SFKs. The co-activation of RTKs and SFKs

observed in clusters containing EGFR (Figure 3B) and MET

(Figure 4) suggested the hypothesis that functional synergy

between two or more tyrosine kinases plays a role in lung cancer

development. This prompted us to search for other clusters in

which two or more tyrosine kinases were found together. We

identified clusters defined from t-SNE embedding of Spearman,

Euclidean, or combined (SED) dissimilarity as described above

that contain two or more tyrosine kinases (Table 3). Discoidin

domain receptor 2 (DDR2) has recently been identified as a

possible lung cancer driver [38], and was associated with the SFK,

HCK in clusters derived from all three of these embeddings

(Table 3). DDR2 was frequently co-activated with HCK, and also

with DDR1, FGR, and PDGFRA in a number of samples, as

identified in the SED cluster (Figure 6). These clusters of co-

activated tyrosine kinases indicate cooperation in signal transduc-

tion, and may suggest therapies with combinations of kinase

inhibitors [39,40].

Discussion

This paper addresses urgent calls to analyze proteomic data

with more effective methods, and integrate these analyses with

protein interaction and function databases to elucidate signaling

networks that drive diseases such as lung cancer [41,42].

Combining data interrogation methods with computer visualiza-

tion tools significantly augments our capacity to make sense of

large data sets and their links to genome and protein interaction

databases. We describe here effective approaches to explore data

structure, select subsets based on statistical relationships, and

visualize selections as networks. The combined internal and

external evaluations provided strong evidence that clusters of

proteins identified here represent functional signaling networks in

lung cancer because they contain proteins that are known to

interact with each other.

The open-source software platforms R, Cytoscape, and

RCytoscape were employed for this study. Scripting languages

such as R are much more adept at handling large data sets than

spreadsheets, and R has a rich library of statistical analysis tools,

including many developed for bioinformatics and systems biology

[1,43]. Cytoscape is arguably the most advanced tool for network

graphing, and offers a graphic user interface (GUI) well suited for

exploration and analysis of networks [44,45]. RCytoscape

(rcytoscape.systemsbiology.net) links R and Cytoscape, and

extends Cytoscape’s functionality beyond what is possible with

the Cytoscape GUI.

Key steps that resolved informative clusters were: 1) Calculation

of distance matrices using NA to represent the absence of data

proved appropriate for mass spectrometry-based proteomic data,

and would be advantageous for any data set where detection limits

significantly compromise confidence about negative results. 2)

Dissimilarity matrices were used as feature vectors for embedding.

Embedding dissimilarity representation may resolve data structure

more effectively than the distance matrix because no attempt to

preserve distance is made [27]. 3) Multiple methods were used for

statistical calculation of dissimilarity. A combination of Spearman

(or Pearson) and Euclidean distance may increase the resolution of

the statistical data structure [25], or clusters identified by different

methods may be combined later. 4) t-SNE was employed for

embedding [26]. We found that t-SNE was as good or better at

resolving clusters from proteins well-represented in the data than

other methods, and far superior for identifying clusters from less-

well-represented proteins. To explore data structure, displaying

three dimensional data structures in PyMOL offered the

advantage that the investigator may explore the graph and select

clusters of nodes for further analysis (Figure S2, movie S2).

Displaying two-dimensional data structure in Cytoscape had the

advantage that individual node names were visible (Figures S1,

S3). 5) Data wrangling was performed where necessary to combine

and filter clusters by conformity to a pattern in the primary data,

membership, and/or signal strength. Inspection of the clusters’

primary data (e.g., using heat maps) was crucial at this stage. This

step is termed wrangling because manual, hypothesis-driven

manipulation, and decisions based on the results, are akin to

herding data into clusters. 6) Clusters were analyzed using external

databases containing protein interaction data and GO terms. 7)

Finally, clusters were visualized as networks to convey a large

amount of information in a single graph. Merging edges was useful

for clarity where graphs have a large number of edges. String and

GeneMANIA use different methods to calculate edge weights, but

the weights are of similar scale, so merging them is an acceptable

way to provide an overview of evidence for interactions.

This kind of data analysis is an example of pattern recognition

for which human brains can be very adept [46], whereas

computers are functionally more capable of recognizing patterns

in large matrices of numbers. Computer algorithms that embed

statistical relationships into two- or three-dimensional structures

are thus a valuable first step. We found that automated clustering

methods were fairly effective for statistically robust data (Figur-

es S4, S5, and 3), but for more difficult clusters, automated

methods were less reliable (Figures S6, S7), so it was advantageous

to employ the capabilities of the human brain aided by computer

graphics.

The human mind’s appreciation of shape also comes into play

when constructing informative graphics [47,48]. Networks of

nodes in the entire lung cancer network was calculated (see Materials and Methods). The LCK/PTK2 network (A) had 122 more edges, and the EGFR
network (B) had 67 more edges, than expected by this calculation.
doi:10.1371/journal.pone.0052884.g003

Data Wrangling Methods for Proteomics

PLOS ONE | www.plosone.org 8 January 2013 | Volume 8 | Issue 1 | e52884



Figure 4. Filtered cluster containing MET derived from first performing t-SNE Spearman and Euclidean embedding separately, then
combining these clusters and filtering for samples containing MET and the most highly represented proteins that are consistent
with data in the rest of the cluster (see Materials and Methods). The heat map (A) represents missing data (NA) as black, and increasing
scaled peptide counts are shown on a blue-yellow scale (color key, left). Data are ordered by decreasing sums of scaled peptide counts for genes
(decreasing from top to bottom) and samples (decreasing from left to right). B) MET in lung cancer shown as a protein-interaction network graphed
as in Figure 3. This cluster had 70-fold more edges, 847-fold greater edge weight, five-fold more GO terms retrieved than the average random cluster,
and 249 more edges than would be expected from these nodes from the entire lung cancer network.
doi:10.1371/journal.pone.0052884.g004
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Figure 5. Filtered cluster containing ALK, graphed as a heat map (A) and protein-interaction network (B). This cluster is derived from
clusters combined from Figure S8B and C in which proteins present in a single sample, or samples containing a single gene, were filtered. This cluster
had twelve-fold more edges, ten-fold greater edge weight than the average random cluster, and 7 more edges than would be expected from these
nodes in the entire lung cancer network. Individual edges are shown from String (blue) and GeneMANIA (black).
doi:10.1371/journal.pone.0052884.g005

Figure 6. Filtered cluster containing DDR2. (A), graphed as a heat map; and (B), graphed as a network as in Figure 5, except additional edges
are included from GeneMANIA: black – genetic interactions; dark turquoise – shared protein domains; violet – physical interactions; green – pathway;
and String: light turquoise – homology; orange – knowledge; and blue – combined score. SHC1 was included because it connected the network for
these proteins for which limited interaction data is known.
doi:10.1371/journal.pone.0052884.g006
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clusters with protein-interaction edges convey the amount of

phosphorylation and known interactions in a meaningful way,

which is much more informative than grids of colored squares

adorned with dendrogram trees. Large, complex network graphs

can be useful for computer-aided exploration, but rapidly become

unwieldy due to their complexity. Simplification of protein

interaction edges and filtering nodes made graphs more accessible

(Figures 3,4,5).

Biological insights
Individual cancerous tumors typically express different combi-

nations of active tyrosine kinases, including multiple receptor

tyrosine kinases [24], which makes it difficult to sort out

relationships between signaling pathways for targeted therapy.

These analyses provide new insights into mechanisms whereby

different combinations of tyrosine kinases may delineate distinct

divisions of labor that induce cell proliferation, avoidance of

apoptosis, and in many cases, promote metastasis. The data-driven

clusters suggest potential links between several different cancer

driver RTKs, SRC-family kinases (SFKs), RTK-SFK pairs, and

proteins that have not previously been characterized.

GO terms enriched in clusters were not randomly distributed,

rather there were themes that suggest roles in cell proliferation,

differentiation, adhesion and migration, as well as strong links to

different metabolic processes such as nucleic acid or carbohydrate

biosynthesis, RNA processing, DNA replication, and chromatin

structure (GO Summary Tables, Information S1). That different

groups were associated with different biological processes further

validates the clustering technique, and suggests that proteins were

activated by distinct pathways or processes in different tumor

samples. While a detailed examination of all the clusters identified

from these data was beyond the scope of this paper, the cluster

membership and GO summary tables provide a starting point for

further investigation. Identification of these new clusters provides a

rich source of information to formulate hypotheses for further

experiments and predict more effective therapies involving

combinations of drugs [39].

Many RTKs shown to be tyrosine phosphorylated in this data

set have been identified by other studies to be activated by

Table 3. Tyrosine kinases in clusters.

Gene Name Spearman cluster Gene Name Euclid cluster Gene Name SED cluster

EGFR 22 DDR2 37 AXL 14

FYN 22 FGR 37 EGFR 14

LYN 22 HCK 37 FYN 14

DDR2 90 LCK 37 LYN 14

HCK 90 PDGFRA 37 DDR1 37

EPHA4 63 DDR1 14 DDR2 37

TYRO3 63 EGFR 14 FGR 37

EPHA3 23 FYN 14 HCK 37

YES1 23 LYN 14 PDGFRA 37

FGR 41 AXL 12 EPHA2 12

PDGFRA 41 EPHA1 12 EPHA4 12

CSF1R 37 EPHA2 12 EPHB2 12

KIT 37 EPHA3 12 ERBB3 12

SRC 37 EPHA4 12 ROR1 12

EPHA5 32 EPHB2 12 TYRO3 12

ERBB4 32 EPHB3 12 EPHA1 58

FGFR4 32 ERBB2 12 EPHA3 58

INSR 12 EPHB3 58

MET 12 ERBB2 40

ROR1 12 INSR 40

TYRO3 12 MET 40

YES1 12 FRK 119

BLK 5 YES1 119

SRC 5 NTRK1 11

EPHA5 13 SRC 11

ERBB4 13 ALK 28

EPHA5 28

ERBB4 28

LTK 28

Clusters from Spearman, Euclid, or SED dissimilarity and t-SNE were filtered for the presence of two or more tyrosine kinases. Numbers identify the particular cluster
from each embedding method.
doi:10.1371/journal.pone.0052884.t003
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different mechanisms, for example, INSR; MET; EHPA2;

PDGFRA/B, FGFR1, and ALK [39,49,50]. The presence of

LCK and LYN in clusters containing proteins commonly

phosphorylated in lung cancer suggest potential pathways of

signal transduction (Figure 3). These are of particular interest in

light of studies that justify the use of SFK inhibitors, or a

combination of SFK and RTK inhibitors, to treat lung cancer

[39,40]. SFKs associate with RTKs, play a role in transducing

their signals, and can phosphorylate RTKs directly, in some cases

mimicking those sites phosphorylated during ligand-induced

receptor activation [51,52].

The results shown in Figure 4 expand the list of RTKs that

potentially collaborate with MET in lung cancer to include

EPHA2, ERBB2 (HER2), ERBB3 (HER3), and AXL. MET

amplification in lung cancer has recently been shown to be

associated with activation of EGFR, ERBB2, ERBB3, and RET

[53]. Co-immunoprecipitation of these RTKs with MET suggests

that trans-activation of RTKs can occur through hetero-dimer-

ization [53]. Recently the RTK, AXL has been found to have a

key role in determining lung cancer chemosensitivity [54,55].

Tyrosine phosphorylation of AXL was detected concomitant with

that of MET, ERBB2, and EPHA2 in a number of samples,

indicated by the cluster shown in Figure 4.

DDR1, which was itself highly tyrosine phosphorylated in the

data analyzed here, clustered with EGFR and LYN (Figure 3B).

DDR1 was unknown as a cancer driver at the time the Rikova et

al., [24] was published; yet this RTK is now known to be a cancer

driver that promotes cell survival through Notch1 [56]. Recently,

DDR2 has been shown to exhibit elevated mRNA levels in

NSCLC samples [38]. Co-activation of MET, AXL, ERBB2, and

EPHA2 (Figure 4), and co-activation of DDR1 with EGFR

(Figure 3B), DDR2, HCK, PDGFRA, and FGR (Figure 6) is

evidence that simultaneous activation of multiple tyrosine kinases

may be common in lung cancer. The frequency in which tyrosine

phosphorylated driver kinases are detected may suggest priorities

for therapies that employ combinations of specific kinase

inhibitors, as well as new avenues for research and drug

development. Thus, assays for activation of sets of particular

kinases in individual tumors may be broadly applicable for

indicating appropriate drugs for cancer therapy in the lung and

other tissues [57].

A major challenge for both basic research and cancer therapy is

to identify critical signal transduction pathways governing cell fate

decisions for specific cell types. The clusters identified here from

lung cancer phosphoproteomic data, combined with network and

GO analysis, suggests that RTK and SFK pathways have some

degree of compartmentalization and functional specialization, and

will hopefully guide further research and investment of resources

to develop drugs targeted to specific proteins or pathways for

cancer therapy.

The novel approaches for clustering sparse phosphoproteomic

data described here can enhance resolution of complex data sets,

which is an important step towards comprehension of molecular

signaling networks in cancer. Our results are consistent with those

of Naegle, et al., [4], who showed that no single clustering

algorithm is sufficient to produce results with biological meaning,

and therefore combining and filtering, or wrangling data, and

employing external information such as that from protein-protein

interaction and GO databases, are crucial for elucidating

interesting relationships in the data.

Materials and Methods

R commands and functions that were used for processing and

graphing data are available in Rcommands S1 and Rfunctions S1.

Phosphoproteomic data
The phosphopeptide data set from Rikova et al.

(‘‘20070918_spectrumtable.txt’’) was downloaded from Phospho-

SitePlus (http://www.phosphosite.org/suppData/RikovaCell/

20070918_spectrumtable.xls) [58]. Gene names were mapped to

HUGO gene names (http://www.genenames.org/) using the R

library ‘‘org.Hs.eg.db’’ and checked against UNIPROT and

ENTREZ IDs. All peptide counts for all proteins were summed

for each protein in each lung cancer sample. For graphing, ‘‘total

phosphorylation’’ represents the sum of phosphopeptides detected

for that protein in the entire data set.

Clustering Methods
The matrix of proteins (gene names) and samples, in which the

absence of data is represented by NA, was used to calculate

Pearson or Spearman correlations between pairwise complete

observations. (We compared this to a simple imputation approach

in which zeros were used to replace NA.) We defined a Pearson or

Spearman distance as one minus the absolute value of the

correlation. Euclidean distance was calculated using the R

function, dist. (Calculation of distance using Manhattan or

Canberra distances were not appreciably different from Euclide-

an.) Pearson and Spearman correlations were very similar, and

Spearman correlations were used preferably in subsequent steps

because these data can’t be assumed to be linear.

Spearman and Euclidean data structures had different regions

of high and low resolution. In other words, some sets of genes that

were poorly resolved in one could be resolved by the other. We

combined Spearman and Euclidean distance matrices by first

scaling the distance matrices to the same scale relative to one

another, and then averaging them, giving rise to Spearman-

Euclidean Distance (SED). The SED was treated as a dissimilarity

representation [27].

Clustering methods applied directly to distance matrices

described above (either with NA or zero to impute the absence

of data) were not effective (see Results), so the following procedure

was performed. Distances of NA signify no statistical interaction

between proteins in these data and thus should be considered large

compared to actual distances. These were therefore set to two

orders of magnitude higher than the maximum distance in each

distance matrix. (Setting this value larger than this had no effect on

the data structure.) The resulting distance matrices were used

directly, or they were used in a dissimilarity representation [59],

i.e. as ‘‘feature vectors,’’ for clustering algorithms (k-means [60], k-

centers [61], fuzzy c-means [62]) or dimension reduction

techniques (multidimensional scaling, t-distributed stochastic

neighbor embedding). A minimum spanning tree method [63]

that finds groups that can be connected by a single linkage was

used to resolve clusters from MDS and t-SNE using the R

functions ‘‘distconnected’’ and ‘‘spantree’’ from package ‘‘vegan’’.

Multidimensional scaling was performed using the R function,

‘‘cmdscale.’’ Clustering methods fuzzy c-means, k-means, and k-

centers were performed in MatLab using the ‘‘kmeans’’ function in

statistics toolbox, ‘‘kcentres’’ function in PRtools (prtools.org) and

‘‘fcm’’ function in fuzzy logic toolbox, respectively, by setting the

number of clusters to 100. For k-means and fuzzy c-means, the

distance matrices are treated as dissimilarity representation and

used as feature vectors; k-centers performed the clustering by
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considering the original distance and using the distance matrices

directly.

The R implementation of t-SNE was employed with the

following parameters: k = 2 or 3, initial dimensions = 30,

perplexity = 30, max iterations = 1000, min cost = 0, and whiten

= TRUE. Figure S3 shows the t-SNE graph with node names and

total phosphopeptides graphed, where grouping of highly phos-

phorylated proteins is apparent. One advantage of t-SNE is that

the number of clusters does not have to be determined in advance;

it can be determined by close proximity on the t-SNE map. t-SNE

measures the similarity between points a and b by centering a

bivariate Student-t distribution on point a and measuring the

density of point b under that distribution [26]. Points within a

circle with a radius of ,3.5 around each point on the t-SNE map

may be considered to be similar to the center point; a group of

points that are individually connected by distances within this

rough radius can also be considered to be related. (Unlike classical

multidimensional scaling, there is no significance assigned to

distances larger than 20 on the t-SNE map.) Thus, while 100

clusters were chosen for comparison to k-means and other

methods (Table 1, Figure 2B), close inspection of the t-SNE map

suggested that at least 137 clusters should be partitioned for

subsequent analyses from the 2D t-SNE, and 157–167 from 3D t-

SNE (Figure S2, Movie S2).

RCytoscape and Cytoscape
RCytoscape was used to graph networks and manipulate graphs

in Cytoscape. RCytoscape (rcytoscape.systemsbiology.net/ver-

sions/current/) is a marriage of Cytoscape [44,45], an open

source bioinformatics software platform for visualizing molecular

interaction networks, and the broadly popular R language and

computing environment for statistical computing and graphics

(http://www.r-project.org/), accomplished under the umbrella of

Bioconductor (bioconductor.org/), another open source project

which provides algorithms and data for bioinformatics in R. The

Cytoscape internal Java API is made available through the

CytoscapeRPC plugin [64]. Since much of Cytoscape’s GUI is

built upon that internal java API, RCytoscape is able to present to

the R user essentially all the commands on the Cytoscape GUI.

Lung cancer phosphoproteomic data processed as described

above was graphed so that node size and increasing yellow color

indicates total phosphorylation. RCytoscape setPosition was used

to set the position of nodes in Figure S1 using multidimensional

scaling coordinates (x–y and x–z) from Spearman, Euclidean, and

SED distance matrices, and t-SNE. Subsets of nodes identified as

clusters were selected and plotted in a new window, and edges

from the edge merge procedure were graphed so that line

thickness indicates the overall weight of evidence for interactions

between proteins.

Evaluation of Clusters
The Index used for cluster evaluation is defined as

Index~intensity x 1z realsamplesð Þ x

1z cleargenesð Þ= 1z percent NAð Þ

where

intensity~total signal - total signal x percent NA=100ð Þ

cleargenes~no: genes - genes culled by slope

realsamples~no: samples�

no: samples x percent single gene samples=100ð Þ:

Herein, ‘‘single gene samples’’ is the number of cases where a

sample in the cluster contains only one gene, and ‘‘single sample

genes’’ represents the number of cases where a gene in the cluster

is represented in only one sample. The ‘‘culled by slope’’ function

sorts genes and samples from largest to smallest within each cluster

and measures the slope of the regression line for each gene in all

the samples. If the slope is negative, the gene follows the general

pattern in the cluster. If the slope is positive, the gene is more

highly expressed in different samples than the rest of the group,

and is culled.

The ‘‘heatmap2’’ function from package ‘‘gplots’’ was used to

graph data from individual clusters using a blue-yellow color scale,

representing NA values as black.

Three dimensional graphs of Pearson and Euclidean distances,

and scaled hybrids between the two, and t-SNE embedding were

initially explored using R libraries ‘‘rgl,’’ ‘‘RGtk2,’’ ‘‘rggobi,’’ and

‘‘scatterplot3d.’’ The program PyMOL was found to be superior

for the purpose of exploring the three-dimensional data structures

(Figure S2; Movies S1, S2). Three-dimensional coordinates were

scaled to approximate dimensions (in Ångstroms) that PyMOL

was designed to handle and exported from R using library

‘‘bio3d’’. Nodes were represented by small spheres and the data

structure. Node identities were preserved in a key. Groups selected

in PyMOL were saved as separate PDB files, imported into R

using library ‘‘bio3d’’, and gene names were retrieved using the

key.

External database queries and edge merging
Gene names from clusters identified using the methods above

were used to query gene ontology (GO) and protein interaction

databases [32]. Gene ontology terms were retrieved using

Bioconductor libraries ‘‘GO.db,’’ ‘‘GOstats,’’ and ‘‘org.Hs.eg.db’’

(bioconductor.org/) using a P value ,0.01. These data are

summarized in GO Summary Tables (Information S1) for the

clusters identified by t-SNE on SED embedding. Protein

interaction data was retrieved from String (string.embl.de/) [30],

GeneMANIA (genemania.org/) [31], and the kinase-substrate

data from PhosphoSitePlus (phosphosite.org) [58]. Proteins

interaction edges from String included only Experiments and

Databases; from GeneMANIA only: Genetic interactions, Path-

way, Physical interactions, and Predicted. PhosphoSitePlus edges

represent kinase-substrate interactions.

Network graphs that incorporated all the above edges rapidly

became too complex to be informative, so edges were merged into

a single edge that conveys the total weight of evidence for

interaction. Since String and GeneMANIA comprise non-identical

but considerably overlapping protein-protein interaction data, we

incorporated all edges from each. Quantitative weights from these

two databases were summed. We also wished to visualize kinase-

substrate relationships from PhosphoSite Plus, and merged these

edges, assigning an arbitrary value of 0.25 to PSP edges to ensure

that they were visible. Edges were merged (after rechecking ID

mapping) assuming that kinase-substrate interactions are direc-

tional (A?B=B?A) and protein-protein interactions are not

A{B~B{Að Þ:
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External Evaluation and Comparison to Random Clusters
To evaluate clusters by external criteria, clusters were compared

to two sets of 11 to 35 genes selected at random from the lung

cancer dataset. Protein interaction edges from String and

GeneMANIA were retrieved as described above except that

PhosphoSite edges were not included. This produced a total of 48

random networks, two each with 11 to 35 nodes, iteratively. The

number of edges per node was calculated, and their combined

weights summed, and divided by the number of nodes. For

randomly selected genes from this data set, the average edge

weight per node was 0.00193160.0068, and the average number

of edges per node was 0.0647360.123.

The number of edges expected from a set of nodes

(clusternodes) in the entire lung cancer network was calculated

using the formula:

expected edges~(total edges connecting clusternodes)2=

2x total edges in lung cancer networkð Þ

Protein interaction edges from String and GeneMANIA (not

PhosphoSite) were used for this calculation. The expected edges

was found to be less than the observed edges for network identified

by kinases in Figures 3,4,5:

PTK2 EGFR MET ALK

observed 250 136 355 42

expected 128 69 106 35

difference 122 67 249 7

X{squared~23:2986, df~3,

p{value~3:499e{05

GO terms were retrieved for gene groups determined by

clustering methods above, and for the randomly selected genes as

described above, using P,0.01. If there is enrichment, at least two

genes in the cluster should have the same GO term, so terms with

single genes were discarded. Calculations were performed on each

set of GO terms to determine the average return of GO terms per

gene. The background for randomly selected genes from this data

set was 0.3560.35 GO terms enriched per gene.

Supporting Information

Figure S1 RCytoscape-driven graphs of lung cancer phospho-

proteomic data from Rikova, et al., [24]. RCytoscape makes it

possible to set the position of nodes according to multidimensional

scaling coordinates derived from statistical measures of relation-

ships among proteins, and to plot different planes of three-

dimensional data (e.g., x–y, A, C, E; or x–z, B, D, F). This allows

the investigator to zoom in and explore the data using the

Cytoscape graphic user interface (GUI). Node size and yellow

color intensity indicates greater phosphorylation. Euclidean (A, B)

and Spearman (C, D) distances were calculated with NAs in the

data set, then remaining NA data were set to 100 times the

maximum distance calculated between proteins. Spearman and

Euclidean distance matrices were then equally scaled and

combined for the Spearman-Euclidean Distance (SED) graph (E,

F). Cytoscape does not yet have the ability to plot this data

structure in three dimensions, so we used PyMOL to explore the

SED data structure using three-dimensional manipulations

(Figure S2).

(PDF)

FIgure S2 Spearman and Euclidean distance matrices were

combined for the Spearman-Euclidean Distance (SED) graph

plotted in three dimensions with PyMOL. Multidimensional

scaling was used to determine node coordinates in three

dimensions; A shows the x–y dimension, B, x–z. Groups of

proteins (identified by different colors) were selected manually. (C,
D) Three-dimensional t-SNE embedding of SED dissimilarity

plotted as in A and B. 49 groups of proteins (identified by different

colors, filtered by low percent NA in the primary data) were

selected using a minimum spanning tree method [63] that finds

groups that can be connected by a single linkage.

(PDF)

Figure S3 Two-dimensional t-SNE embedding of Spearman-

Euclidean dissimilarity graphed in Cytoscape with RCytoscape.

Total phosphorylation is represented by node size and color as in

Figure S1. Node position was adjusted slightly for clarity.

(PDF)

Figure S4 Heat maps of clusters that contained the most highly

tyrosine phosphorylated proteins in lung cancer samples, which

ranked at the top based on the index for evaluation (see Materials

and Methods). Clusters from (A) k-means on Euclid dissimilarity;

(B) t-SNE on on Euclid dissimilarity; (C) t-SNE on Spearman

dissimilarity; (D) t-SNE on Spearman-Euclid dissimilarity; (E)

filtered combined cluster from (B) and (C top). In (C), the third-

ranked cluster containing LCK is also shown (bottom); LCK was

included in all the other top-ranked clusters. Data are graphed as a

heat map in which black represents NA and increasing scaled

peptide counts are shown on a blue-yellow scale (color keys are

shown at the left). Data are ordered by decreasing sums of scaled

peptide counts for genes (decreasing from top to bottom) and

samples (decreasing from left to right).

(JPG)

Figure S5 Heat maps of clusters that ranked second for contents

of tyrosine phosphorylated proteins in lung cancer samples,

graphed as in Figure S4, derived from (A) k-means on Euclid

dissimilarity; (B) t-SNE on on Euclid dissimilarity; (C) t-SNE on

Spearman dissimilarity; (D) t-SNE on Spearman-Euclid dissimi-

larity; (E) filtered combined cluster from (B) and (C). EGFR was in

all of these clusters except that derived from k-means on Euclid

dissimilarity (A), where it was included in the top-ranked cluster

(Figure S4A).

(JPG)

Figure S6 Heat maps of clusters that contained MET, graphed

as in Figure S4, derived from (A) k-means on Euclid dissimilarity;

(B) t-SNE on Euclid dissimilarity (low-abundance data filtered); (C)

t-SNE on Spearman dissimilarity; and (D) t-SNE on Spearman-

Euclid dissimilarity.

(JPG)

Figure S7 Heat maps of clusters that contained ALK, graphed

as in Figure S4 (color keys omitted), derived from (A) k-means on

Euclid dissimilarity; (B) t-SNE on Euclid dissimilarity; (C) t-SNE

on Spearman dissimilarity; and (D) t-SNE on Spearman-Euclid

dissimilarity (low-abundance data filtered).

(PDF)

Figure S8 Heat maps of combined filtered clusters that

contained ALK and EML4, graphed as in Figure S7. A)
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Combined clusters containing EML4 from t-SNE on Euclidean

and Spearman embedding. Samples that did not contain EML4

were filtered. B) Combined clusters containing both ALK and

EML4 from t-SNE on Euclidean and Spearman embedding.

Samples that did not contain ALK or EML4 were filtered. C)

Combined clusters from t-SNE on SED and Spearman embed-

ding, filtered for samples containing ALK.

(PDF)

Information S1 sed2dGO. Clusters identified by t-SNE on

SED embedding and GO term summary for clusters identified by

t-SNE on SED embedding.

(ZIP)

Movie S1 Spearman-Euclidean Distance (SED) dissimilarity

embedded in three dimensions by classic multidimensional scaling

(start of movie) and t-SNE (end of movie), graphed with PyMOL.

Selected nodes are labelled.

(M4V)

Movie S2 SED dissimilarity embedded in three dimensions

using t-SNE graphed as in Movie S1. 49 groups of proteins

(identified by different colors) were selected using a minimum

spanning tree method [63], which finds groups that can be

connected by a single linkage, filtered by low percent NA in the

primary data. The start of the movie shows all proteins not in these

groups (green); these were filtered out for the final scenes.

(M4V)

Rcommands S1 LC_PLoS_ONE_Rcommands.R. R script

commands for processing phosphoproteomic data.

(R)

Rfunctions S1 LC_PLosONE_Rfunctions.R. R and RCytos-

cape functions for processing phosphoproteomic data and

graphing networks.

(R)
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27. Duin RPW, Pękalska E (2012) The dissimilarity space: Bridging structural and
statistical pattern recognition. Pattern Recognition Letters 33: 826–832.

doi:10.1016/j.patrec.2011.04.019.

28. Pritchard JR, Cosgrove BD, Hemann MT, Griffith LG, Wands JR, et al. (2009)

Three-kinase inhibitor combination recreates multipathway effects of a

geldanamycin analogue on hepatocellular carcinoma cell death. Mol Cancer
Ther 8: 2183–2192. doi:10.1158/1535-7163.MCT-08-1203.

29. Bertotti A, Burbridge MF, Gastaldi S, Galimi F, Torti D, et al. (2009) Only a
subset of Met-activated pathways are required to sustain oncogene addiction. Sci

Signal 2: ra80. doi:10.1126/scisignal.2000643.

30. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. (2009) STRING 8–

a global view on proteins and their functional interactions in 630 organisms.
Nucleic Acids Res 37: D412–D416. doi:10.1093/nar/gkn760.

31. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, et al. (2010)
The GeneMANIA prediction server: biological network integration for gene

prioritization and predicting gene function. Nucleic Acids Res 38: W214–W220.

doi:10.1093/nar/gkq537.

Data Wrangling Methods for Proteomics

PLOS ONE | www.plosone.org 15 January 2013 | Volume 8 | Issue 1 | e52884



32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nat Genet 25: 25–29. doi:10.1038/75556.

33. Gentile A, Trusolino L, Comoglio PM (2008) The Met tyrosine kinase receptor

in development and cancer. Cancer Metastasis Rev 27: 85–94. doi:10.1007/
s10555-007-9107-6.

34. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic
lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8: 11–23.

doi:10.1038/nrc2291.

35. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, et al. (1994)
Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-

Hodgkin’s lymphoma. Science 263: 1281–1284.
36. Mostafavi S, Morris Q (2012) Combining many interaction networks to predict

gene function and analyze gene lists. Proteomics 12: 1687–1696. doi:10.1002/
pmic.201100607.

37. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current

approaches and outstanding challenges. PLoS Comp Biol 8: e1002375.
doi:10.1371/journal.pcbi.1002375.

38. Sasaki H, Shitara M, Yokota K, Okuda K, Hikosaka Y, et al. (2012) DDR2
polymorphisms and mRNA expression in lung cancers of Japanese patients.

Oncol Lett 4: 33–37. doi:10.3892/ol.2012.684.

39. Belani CP, Goss G, Blumenschein G (2011) Recent clinical developments and
rationale for combining targeted agents in non-small cell lung cancer (NSCLC).

Cancer Treat Rev. doi:10.1016/j.ctrv.2011.05.009.
40. Rothschild SI, Gautschi O, Haura EB, Johnson FM (2010) Src inhibitors in lung

cancer: current status and future directions. Clin Lung Cancer 11: 238–242.
doi:10.3816/CLC.2010.n.030.

41. Wu X, Chen H, Wang X (2012) Can lung cancer stem cells be targeted for

therapies? Cancer Treat Rev 38: 580–588. doi:10.1016/j.ctrv.2012.02.013.
42. Goh WWB, Lee YH, Chung M, Wong L (2012) How advancement in biological

network analysis methods empowers proteomics. Proteomics 12: 550–563.
doi:10.1002/pmic.201100321.

43. Reimers M, Carey VJ (2006) Bioconductor: an open source framework for

bioinformatics and computational biology. Meth Enzymol 411: 119–134.
doi:10.1016/S0076-6879(06)11008-3.

44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a
software environment for integrated models of biomolecular interaction

networks. Genome Research 13: 2498–2504. doi:10.1101/gr.1239303.
45. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and

analysis of biological networks. Methods Mol Biol 696: 291–303. doi:10.1007/

978-1-60761-987-1_18.
46. Clery D (2011) Galaxy evolution. Galaxy zoo volunteers share pain and glory of

research. Science 333: 173–175. doi:10.1126/science.333.6039.173.
47. Tufte ER (2001) The visual display of quantitative information. Graphics Pr. 1.

48. Spiegelhalter D, Pearson M, Short I (2011) Visualizing uncertainty about the

future. Science 333: 1393–1400. doi:10.1126/science.1191181.
49. Ming G-L, Song H (2011) Adult Neurogenesis in the Mammalian Brain:

Significant Answers and Significant Questions. Neuron 70: 687–702.
doi:10.1016/j.neuron.2011.05.001.

50. Janku F, Garrido-Laguna I, Petruzelka LB, Stewart DJ, Kurzrock R (2011)

Novel Therapeutic Targets in Non-small Cell Lung Cancer. J Thorac Oncol 6:

1601–1612. doi:10.1097/JTO.0b013e31822944b3.

51. Huang YZ, McNamara JO (2010) Mutual regulation of Src family kinases and

the neurotrophin receptor TrkB. J Biol Chem 285: 8207–8217. doi:10.1074/

jbc.M109.091041.

52. Bromann PA, Korkaya H, Courtneidge SA (2004) The interplay between Src

family kinases and receptor tyrosine kinases. Oncogene 23: 7957–7968.

doi:10.1038/sj.onc.1208079.

53. Tanizaki J, Okamoto I, Sakai K, Nakagawa K (2011) Differential roles of trans-

phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners

of MET in lung cancer with MET amplification. British Journal of Cancer 105:

807–813. doi:10.1038/bjc.2011.322.

54. Linger RMA, Cohen RA, Cummings CT, Sather S, Migdall-Wilson J, et al.

(2012) Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks

growth and enhances chemosensitivity of human non-small cell lung cancer.

Oncogene. doi:10.1038/onc.2012.355.

55. Zhang Z, Lee JC, Lin L, Olivas V, Au V, et al. (2012) Activation of the AXL

kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44:

852–860. doi:10.1038/ng.2330.

56. Kim H-G, Hwang S-Y, Aaronson SA, Mandinova A, Lee SW (2011) DDR1

receptor tyrosine kinase promotes prosurvival pathway through Notch1

activation. J Biol Chem 286: 17672–17681. doi:10.1074/jbc.M111.236612.

57. Accornero P, Miretti S, Bersani F, Quaglino E, Martignani E, et al. (2012) Met

Receptor Acts Uniquely for Survival and Morphogenesis of EGFR-Dependent

Normal Mammary Epithelial and Cancer Cells. PLoS ONE 7: e44982.

doi:10.1371/journal.pone.0044982.g005.

58. Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B (2004)

PhosphoSite: A bioinformatics resource dedicated to physiological protein

phosphorylation. Proteomics 4: 1551–1561. doi:10.1002/pmic.200300772.
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