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Preserving Structure in Model-Free Tracking

Lu Zhang and Laurens van der Maaten

Abstract—Model-free trackers can track arbitrary objects based on a single (bounding-box) annotation of the object. Whilst the
performance of model-free trackers has recently improved significantly, simultaneously tracking multiple objects with similar
appearance remains very hard. In this paper, we propose a new multi-object model-free tracker (using a tracking-by-detection
framework) that resolves this problem by incorporating spatial constraints between the objects. The spatial constraints are learned
along with the object detectors using an online structured SVM algorithm. The experimental evaluation of our structure-preserving
object tracker (SPOT) reveals substantial performance improvements in multi-object tracking. We also show that SPOT can improve
the performance of single-object trackers by simultaneously tracking different parts of the object. Moreover, we show that SPOT can be
used to adapt generic, model-based object detectors during tracking to tailor them towards a specific instance of that object.

Index Terms—Model-free tracking, multiple-object tracking, online learning, structured SVM

1 INTRODUCTION

RACKING is a fundamental problem in computer vision

with applications in a wide range of domains. Whilst
significant progress has been made in tracking specific
objects (e.g., in tracking faces [1], humans [2], [3], [4], [5],
cars [6], and rigid objects [7]), the development of trackers
that work well on arbitrary objects remains hard. Because
manually annotating sufficient examples of all objects in
the world is prohibitively expensive and time-consuming,
recently, approaches for model-free tracking have received
increased interest [8], [9]. In model-free tracking, an object
of interest is manually annotated in the first frame of a
video sequence, e.g., using a rectangular bounding box
drawn around the object. The annotated object needs to
be tracked throughout the remainder of the video. Model-
free tracking is a challenging task because (1) little prior
information is available about the object to be tracked,
(2) this information is ambiguous in the sense that the ini-
tial bounding box only approximately distinguishes the
object of interest from the background, and (3) the object
appearance may change drastically over time, in particu-
lar, when the object is deformable.

Usually, a tracking system comprises three main compo-
nents [10]: (1) an appearance model that predicts the likeli-
hood that the object is present at a particular location based
on the local image appearance, (2) a location model that pre-
dicts the prior probability that the object is present at a par-
ticular location; and (3) a search strategy for finding the
maximum a posteriori location of the object. In our model-
free tracker, the appearance model is implemented by a
classifier trained on histogram-of-gradient (HOG) features
[11], the location model is based on the relative locations of
the objects that are being tracked, and the search strategy is
a sliding-window exhaustive search.
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In many applications, it is necessary to track more than
one object. For instance, in surveillance applications, one
frequently needs to track particular people [3], faces [12], or
cars [13] in a complex environment. A simple approach to
tracking multiple objects is to run multiple instances of a
single-object tracker. In this paper, we argue that this is sub-
optimal because such an approach fails to exploit spatial
constraints between the objects. For instance, nearby people
tend to walk in the same direction on the side walk, cars
drive in the same direction on the freeway, and when the
camera shakes, all objects will move roughly in the same
direction. We show that it is practical to exploit these types
of spatial relations between objects in model-free tracking.
In particular, we develop a structure-preserving object
tracker (SPOT) that incorporates spatial constraints between
objects using a pictorial-structures framework [14]. We train
the appearance models of all the objects and the structural
constraints between these objects jointly in an online struc-
tured SVM framework [15]. Our experimental evaluations
show that the incorporation of structural constraints leads
to substantial performance improvements in multi-object track-
ing: SPOT performs very well on Youtube videos with sig-
nificant camera motion, rapidly moving objects, object
appearance changes, and occlusions. We also show that
SPOT may be used to improve single-object trackers by using
part detectors in addition to the object detector, with spatial
constraints between the parts. Moreover, we show that
SPOT can be used to tailor detectors for generic objects to spe-
cific instances of that object, which leads to performance
improvements in model-based tracking.

In summary, our main contributions are: (1) we present a
new approach that performs online learning of pictorial-
structures models that incorporate spatial constraints
between objects, which helps in simultaneous model-free
tracking of multiple objects, (2) we show that our approach
may improve the performance of single-object model-free
trackers by simultaneously tracking a target object and
informative parts of that object, and (3) we show that our
approach can be used to tailor state-of-the-art generic object
detectors to particular objects.

An earlier version of this paper appeared in [16]. Com-
pared to the prior paper, this study contains (1) a substantial
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number of additional explanations and analysis, (2) various
additional experiments to investigate the impact of spatial-
structure preservations in tracking, and (3) a new approach
for adapting existing generic-object detectors to improve
their performance when tracking a specific object.

The outline of the remainder of this paper is as follows.
We discuss related work in Section 2. Section 3 introduces
our new SPOT tracker that incorporates spatial relations
between different objects or difference object parts. We pres-
ent the results of our experiments in Section 4. Section 5 con-
cludes the paper.

2 RELATED WORK

Our structure-preserving object tracker incorporates ideas
from prior work on model-free tracking, deformable tem-
plate models, and online learning for structured prediction
models. Below, we briefly review relevant prior work on
these three topics.

2.1 Model-Free Tracking

There exists a plethora of prior work on model-free track-
ing. Below, we give a concise overview of this work. For
extensive reviews on model-free tracking, we refer the
reader to [17], [18].

Model-free trackers can be subdivided into (1) generative
trackers that model only the appearance of the object itself
[19], [20], [21] and (2) discriminative trackers that model the
appearance of both the object and the background [8], [9],
[22], [23], [24], [25]. Because generative trackers model
the appearance of the target object without considering the
appearance of the background, they often fail when the
background is cluttered or when multiple moving objects
are present. By contrast, discriminative trackers construct a
classifier that distinguishes the target object from the back-
ground. Recent results suggest that discriminative trackers
outperform generative trackers [9] (similar results have
been obtained for model-based trackers, e.g., [26], [27]). This
result is supported by theoretical results showing that dis-
criminative models always outperform their generative
counterparts on a discriminative task such as object tracking
[28]. Hence, in this paper, we will focus on learning discrim-
inative object appearance models.

Many prior studies on model-free tracking focus on
exploring different feature representations for the target
object, including feature representations based on points
[29], [30], [31], contours [32], [33], [34], integral histograms
[35], subspace learning [21], sparse representations [36], and
local binary patterns [9]. In this work, we capitalize on the
success of the Dalal-Triggs [11] and Felzenszwalb [6] detec-
tors, and use HOG features instead.

Recent work on model-free tracking also focuses on
developing new learning approaches to better distinguish
the target object from the background. In particular, previ-
ous studies have investigated approaches based on boosting
[23], [37], random forests [9], multiple instance learning [8],
and structured output learning to predict object transforma-
tions [38]. Our tracker is similar to these approaches in that
it updates the appearance model of the target object online.
Our tracker differs from previous approaches in that it uses
a learner that aims to identify configurations of objects or

object parts; specifically, we use a structured SVM model
that is updated online.

Whilst simultaneous tracking of multiple objects using
model-based trackers has received significant attention in
prior work, e.g., in the context of tracking people [3], [4], [5],
[39] and other objects [40], [41], up to the best of our knowl-
edge, model-free tracking of multiple objects has hitherto
remained unstudied. The most closely related to our work
is a recent study [42] that tries to improve the identification
of a single target object by also tracking stable features in
the background, thereby improving the location prior for
the target object. Our work differs from [42] in that it only
tracks target objects and exploits the spatial relations
between those; this makes it much easier to track, e.g., mul-
tiple objects that have a very similar appearance, such as
individual flowers in a large flower field or individual cars
on a freeway.

The present paper is related to several prior studies
that illustrate the potential of using contextual informa-
tion to improve the performance of model-free trackers. In
particular, [43], [44], [45], [46] automatically identify one
or more auxiliary points or regions that are tracked in
order to improve the location prior of the tracker. Auxil-
iary regions are generally defined as regions that are
salient, that co-occur with the target object, and whose
movement is correlated with that of the target object. They
can be tracked, e.g., using color-based mean-shift tracking
[44], optical flow [46], or KLT tracking [45]. (In addition to
auxiliary regions, [46] also employs “distractor” regions,
which are similar in appearance to the target and consis-
tently co-occur with the target, as context.) Our work dif-
fers from [44], [46] in that we adapt our model of the
spatial relations between objects (or object parts) using an
online-learning approach, which allows us to simulta-
neously track “target” and “auxiliary” objects for much
longer periods of time. Our work also differs from prior
work in that we do not make a distinction between
“target” and “auxiliary” objects. Specifically, we use the
same features and tracking-by-detection approach for
both types of objects and the interaction between target
and auxiliary objects is “undirected”: the detection of aux-
iliary objects may help to identify the location of the target
object, but vice versa, the detection of the target objects
may also help to identify the location of the auxiliary
object. This undirected interaction between target and
auxiliary objects may lead to a more robust tracker.

In model-based tracking, various studies have also
proposed the use of contextual information to improve
the performance of the tracker. For instance, [47] makes
assumptions on the environment (viz. it assumes the
environment is a meeting room) in order to learn and
exploit relations between different object categories (e.g.,
humans and chairs). Stalder et al. [48] propose an
approach to increase the robustness of model-based track-
ers by incorporating constraints on the size of the target
object(s), on the preponderance of the background, and
on the smoothness of track trajectories. Roth et al. [49]
exploit prior information on the location of target objects
by learning classifier grids, i.e., by learning a separate
detection classifier for each image location. Our study is
different from [47], [48], [49] in that we take a model-free
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instead of a model-based approach: our tracker relies on
just a single annotation of the target objects.

2.2 Deformable Template Models

Deformable template models represent an object by a col-
lection of part models that are spatially related. Each part
models the appearance of a portion of the (deformable)
object, and the spatial relations between the parts are
modeled by some joint distribution over part locations.
Popular choices for this joint distribution over part loca-
tions include (1) PCA-based models that use a low-rank
Gaussian model and (2) pictorial-structures models [14],
which use a collection of springs between the parts (typi-
cally, using a tree structure). PCA-based models are used
in, among others, active appearance models [50], active
shape models [51], and constrained local models [52] that
are commonly used in face or medical image analysis.
Models based on pictorial structures are commonly used
in tasks such as object detection [6], pose estimation [15],
[53], and gesture recognition [54], [55]. In model-free
tracking, there generally is insufficient training data to
train PCA-based models, which is why we focus on
pictorial-structures models in this work.

Pictorial-structures models represent spatial relations
between object parts by springs that can be exerted or com-
pressed (at a penalty) when the object under consideration
is deformed. In many prior studies, pictorial-structures
models are designed manually to incorporate the most
important spatial relations between the object parts. For
instance, [56], [57] represent the hierarchical structure of the
human upper body using eight parts (viz. upper/lower
arms, head, torso, and hands), and [53] further divide these
upper body parts into smaller subparts in order to make the
model more flexible. When designing models for the detec-
tion or tracking of arbitrary objects, however, such a manual
approach to the design of pictorial-structures models is not
viable. Therefore, detectors for arbitrary objects typically
use generic structure models, such as (1) a star-shaped
model that represents the object by a root node that is
directly connect with all its parts [6] or (2) a Chow-Liu tree
[58] that models only spatial relations between nearby parts
[59]. In such detectors, the parts are automatically identified
by searching for the most discriminative regions of the
object based on a large collection of annotated images.

In this work, we also adopt generic star-shaped and min-
imum spanning tree models to represent the relations
between the multiple objects that are being tracked. (In a
second experiment, we also study model-free trackers that
incorporate models for object parts that are heuristically
determined.). The key difference with prior studies, how-
ever, is that we not learn the parameters of the springs in
the pictorial-structures model (i.e., the length and direction
of the springs) based on a large collection of annotated data,
but that we learn the spring parameters in an online fashion
during tracking [15].

2.3 Online Learning for Structured Prediction

Structured prediction techniques such as conditional ran-
dom fields [60] and structured support vector machines [61]
make predictions over (exponentially) large output spaces

that have some inherent structure, such as sequences, trees,
or objects configurations, and have been used with much
success in a variety of computer vision problems [53], [62],
[63]. The detection of multiple objects can naturally be
framed as a structured-prediction problem of searching
over all possible object configurations.

In our work, a structured predictor is trained in an online
manner based on detections in earlier frames. Algorithms
for online learning of structured predictors are generally
based on perceptron-like learning algorithms [64], [65] or on
stochastic (sub)gradient descent algorithms [66], [67]. Both
learning algorithms perform cheap parameter updates
based on a single training example or a small batch of exam-
ples, and work well in practice (in non-convex learning
problems, they often construct better solutions than batch
learners). We update our multi-object tracker after each
frame using a simple (stochastic) subgradient descent algo-
rithm cf. [61]; the step size for each parameter update is
determined using a passive-aggressive algorithm [68].

3 SPOT TRACKER

The basis of our structure-preserving object tracker is
formed by the popular Dalal-Triggs detector [11], which
uses HOG features to describe image patches and an SVM
to predict object presence. HOG features measure the mag-
nitude and the (unsigned) direction of the image gradient in
small cells (we used 8 x 8 pixel cells). Subsequently, con-
trast normalization is applied on rectangular, spatially con-
nected blocks of four cells. The contrast normalization is
implemented by normalizing the L2-norm of all histograms
in a block. The resulting values are clipped at 0.2 and then
renormalized according the L2-norm. The advantages of
HOG features are that (1) they consider more edge orienta-
tions than just horizontal or vertical ones, (2) they pool over
relatively small image regions, and (3) they are robust to
changes in the illumination of the tracked object. Together,
this makes HOG features more sensitive to the spatial loca-
tion of the object than, e.g., Haar features [11], which is par-
ticularly important in model-free tracking because the
identified location of the object is used to update the classi-
fiers: small localization errors may thus propagate over
time, causing the tracker to drift. Moreover, efficient imple-
mentations can extract HOG features at high frame rates.

3.1 Model

We represent the bounding box that indicates object i€V
(with V representing the set of objects we are tracking) by
B; = {x;,w;, h;} with center location x; = (z;,y;), width w;,
and height h;. The HOG features extracted from image I
that correspond to locations inside the object bounding box
B; are concatenated to obtain a feature vector ¢(I; B;). Sub-
sequently, we define a graph G=(V, E)) over all objects i € V'
that we want to track with edges (i,j) € E between the
objects. The edges in the graph model can be viewed as
springs that represent spatial constraints between the
tracked objects. Next, we define the score of a configuration
C ={By,..., By} of multiple tracked objects as the sum of
two terms: (1) an appearance score that sums the similarities
between the observed image features and the classifier
weights for all objects and (2) a deformation score that
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Fig. 1. The left image shows a configuration formed by some patches, where vertices and edges indicate objects and spatial relationships between
objects. The middle image shows the features extracted from the left configuration, where vertices and edges indicate HOG features of objects and
relative location vectors between objects. The right images shows the structure model we trained, where vertices and edges indicate trained HOG
templates of objects and relative location vectors between objects. Our goal is to find the configuration match the trained structure model best in

each frame, and update the structure model as well.

measures how much a configuration compresses or
stretches the springs between the tracked objects (the rela-
tive angles of the springs are not taken into account in our
model). Mathematically, the score of a configuration C' is
defined as:

s(C;L,0) =Y w! ¢ (I, B))
eV

=AY s —xp) — eyl

(i.j)eE

(1)

Herein, the parameters w; represent linear weights on the
HOG features for object ¢, e;; is the vector that represents
the length and direction of the spring between objects ¢
and j, and the set of all parameters is denoted by
O ={wy,..., Wy, el,...,ep}. We treat the parameter A
as a hyperparameter that determines the trade-off
between the appearance and deformation scores. We use
Platt scaling [69] to convert the configuration score to a
configuration likelihood p(C|L;®). Our model is illus-
trated in Fig. 1. In preliminary experiments, we also tried
to incorporate (temporal) Gaussian priors on the object
locations in the score s(C;I,®), but this did not appear to
lead to performance improvements: the location prior
specified by the spatial constraints in s(C; I, ®) appears to
be sufficient.

3.2 Inference

Given the parameters of the model, finding the most likely
object configuration amounts to maximizing Eq. (1) over all
possible configurations C. This maximization is intractable
in general because it requires searching over exponentially
many configurations, but for tree-structured graphs G, a
combination of dynamic programming and min-convolu-
tions can be used to perform the maximization in linear
time. Here we only give briefly description of the inference
algorithm; for more details, we refer to [6], [70].

The dynamic programming equations for maximizing
Eq. (1) take the form of a message-passing procedure on the
tree G. Herein, a message from object ¢ to j is computed by
(1) gathering all incoming messages into object 4, (2) com-
bining the resulting score with the object detection scores
for object i, and (3) transforming the result to incorporate
for the stress in the edge between object i and j. The mes-
sage-passing equations take the form:

Rij(x) =w; ¢ (I, Bi) + Z i (%), (2)
kA j: (i) EE
Himj(X) = max [Rij(x) = All(x = x) — ez’jHQ]a (3)

where B; = {x,w;, h;}. The message-passing procedure
emanates from an arbitrary root object; after a full forward-
backward pass on the pictorial-structures tree, the sum of
all incoming messages into the root corresponds to the con-
figuration C* that maximizes s(C;I,®). The configuration
C* can be recovered by backtracking the computations
already performed. See [6] for more details.

The inference algorithm can be implemented very effi-
ciently because the negate of Eq. (3) is a two-dimensional
min-convolution problem. The one-dimensional counterpart
of Eq. (3) can be rewritten in the form:

D(p) = min [f(q) + (p — a)’], (4)

where p,q € G with G a one-dimensional grid. The value
of D(p) can be computed Vp € G in linear time by loop-
ing over the parabolas at all locations p, maintaining a
list of coordinates for which the parabolas considered
until now have the lowest value [70]. At each step in
this loop, the intersection of the current parabola with
the last parabola in the list is computed analytically.
Based on the location of this intersection, the range of
coordinates for which the current parabola has the low-
est value can be determined, from which we can decide
whether or not the last parabola in the list should be
removed or not. The min-convolution algorithm is
extended to two dimensions by first running the one-
dimensional algorithm over all rows of the image, and
then running the one-dimensional algorithm on the out-
put of this first stage across all columns.

3.3 Learning

Like other model-free trackers [8], [9], [23], we use the
tracked object configurations in previous frames as posi-
tive examples to update our model. After observing an
image I, the most likely object configuration C' is found
by maximizing Eq. (1). We assume that this object config-
uration C is a true positive example, and therefore, we
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would like the score at this ground truth location
5(C;1,0) to be larger than any other configuration C' by
at least a margin A(C, C). Herein, A is a task-loss function
that equals zero iff C' = C. The task loss is assumed to be
non-negative, YC # C : A(C,C) > 0, and upper bounded
by a constant M, IMVC : maXCA(C’ C) < M. To adapt
our model in such a way that it assigns a higher score to
the positive locations and lower scores to other locations,
we update the model parameters © by taking a gradient
step in the direction of the structured SVM loss function
[61]. Here, the structured SVM loss ¢ is defined as the
maximum violation of the task loss by configuration C:

0(0:1,0) = max [s(C;1,0) — s(C;1,0) + A(C,C)].  (5)

The structured SVM loss function does not contain qua-
dratic terms, but it is the maximum of a set of affine func-
tions. As a result, the structured SVM loss in Eq. (5) is a
convex function in the parameters 0.

In our SPOT tracker, we define the task-loss A(C,C)
based on the amount of overlap between the correct config-
uration C and the incorrect configuration C:

_Z<1_B’”Ef’>. (6)
7 B;UB;
Herein, the union and intersection of two bounding boxes
B; and B; are both measured in pixels. If C' has no overlap
with C, the task loss equals |V|, and the task loss equals zero
iff C = C. In preliminary experiments, we also explored
task losses that only considered the distance between object
centers (and not the size of objects), but we did not find
these to improve the performance of our tracker.

The gradient of the structured SVM loss in Eq. (5) with
respect to the parameters O is given by:

A(C,C)

Vol(0;1,C) = Ves(C*;1,0) — Ves(C; 1, 09), (7)

in which the “negative” configuration C* is given by:

C* = argmax (s(C;1,0) + A(C,C)). (8)
¢

In practice, this gradient is not very appropriate for learn-
ing the parameters of our multi-object tracker because
due to the influence of the deformation score, the nega-
tive configuration C* tends to comprise bounding boxes
B; that have very low appearance scores w! ¢(I; B;). As a
result, these bounding boxes are inappropriate examples
to use as a basis for updating w;. For instance, if we
would incorporate the deformation score when identify-
ing a negative example in the Air Show video (see Fig. 2),
we would often select empty sky regions as negative
examples. These regions are very uninformative, which
hampers the learning of good appearance models for the
airplanes under consideration. To address this problem,
we ignore the structural constraints when selecting the
negative configuration. Specifically, we use a search direc-
tion p for learning that is defined as:

p = Ve3(C*;1,0) — Vos(C;1,0), (9)

where the negative configuration is given by:

C* = argmax (5(C;1,0) + A(C, C)),
C

(10)

with the negative appearance score 5 being defined as:

- S wlotn s

eV

5(C*;1,0) (11)
It is straightforward to show that the inner product between
the search direction and the true gradient direction remains
positive, p - Vol(0;1,C) > 0, as a result of which the learner
will still converge (under suitable conditions on the step
size [71]). The configuration C* can be computed efficiently
by (1) adding a term to each object filter response that con-
tains the ratio of overlapping pixels for a bounding box at
that location with the detected bounding box to account for
the task loss A and (2) re-running exactly the same efficient
inference procedure as the one that was used to maximize
Eq. (1) over configurations.

We use a passive-aggressive algorithm to perform the
parameter update [68]. The passive-aggressive algorithm
sets the step size in such a way as to substantially decrease
the loss, while ensuring that the parameter update is not too
large. In particular, the passive-aggressive algorithm uses
the following parameter update:

((0:;1,C)
IpI*+ 5%

where K €(0,+00) is a hyperparameter that controls the
“aggressiveness” of the parameter update. The selection of
K will be discussed in Section 4.1. In preliminary experi-
ments, we also experimented with a confidence-weighted
learning algorithm [72] that finds an individual step size for
each parameter. However, the performance of this confi-
dence-weighted learning algorithm was very similar to that
of the passive-aggressive algorithm, which is why we use the
passive-aggressive algorithm in the remainder of the paper.

When an object is occluded, we do not want to update
the appearance model for that object (even if its location
was correctly predicted thanks to the spatial constraints in
our model). To avoid erroneous updates of our appearance
model, we only update a weight vector w; corresponding
to detection B; when the exponentiated score for that
object exceeds some threshold. In particular, we only
update the w; and e;; whenever Lexp(w; ¢(I; B;)) > 0.4.

The weights w; are initialized by training an SVM that
discriminates between the manually annotated object from
50 randomly selected negative examples (extracted from
the first frame) that have little to no overlap with the
ground-truth annotation. The parameters e;; are initialized
based on the ground-truth annotations of the objects:
e, — X; — X;j, with x; and x; the locations of objects 7 and j
in the first frame.

®— 06— P, (12)

3.4 Graph Structure

A remaining issue is how we determine the structure of the
graph G, i.e., how we decide on which objects are connected
by an edge. Ideally, we would employ a fully connected
graph G, but this would make inference intractable (see
Section 3.2). Hence, we explore two approaches to construct
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Fig. 2. Tracking results obtained by mst-SPOT on all nine videos used in Experiment 1 (from top to bottom: Air Show, Car Chase, Red Flowers, Hunt-
ing, Sky Diving, Shaking, and Basketball). The colors of the rectangles indicate the different objects that are tracked. Figure best viewed in color.
Videos showing the full tracks are presented in the supplementary material, which can be found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPAMI.2013.221.

a tree on the objects i € V: (1) a star model [6] and (2) a mini-
mum spanning tree model. In the star model, each object is
connected by an edge with a dummy object r € V' that is
always located at the center of all the objects, i.e., there are
no direct relations between the objects. This requires a
minor adaptation of the score function:

s(C;1,0) = > wip(l; By)
eV /r

A Yl - %) — el

(i,r)€E

(13)

The minimum spanning tree model is constructed based on
the object annotations in the first frame; it is obtained by
searching the set of all possible completely-connected tree
models for the tree that minimizes 3, »cp [ — x; |?, where
x; and x; are the locations of objects 7 and j in the first frame.

3.5 Computational Complexity
The main computational costs of running our tracker are in
the extraction of the HOG features (which are shared

between object detectors) and in the computation of the
appearance score per object; after these quantities are com-
puted, the maximization of Eq. (1) takes only a few millisec-
onds. The computational complexity grows linearly in the
number of objects being tracked (i.e., in [V]). We found that
it is possible to track approximately four objects simulta-
neously in real-time (in small videos of size 320 x 240 pix-
els) on a consumer laptop.

4 EXPERIMENTS

We performed three sets of experiments to evaluate the
performance of our tracker. In the first set of experi-
ments, we evaluate the performance of the SPOT tracker
on a range of multi-object tracking problems, comparing
it to the performance of various state-of-the-art trackers
that do not employ structural constraints between the
objects. In the second set of experiments, we study the
use of SPOT to improve single-object tracking by track-
ing parts of an object and constraining the spatial config-
uration of those parts. The third and last experiment
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TABLE 1
Performance of Five Model-Free Trackers on Multiple-Object Videos Measured in Terms of (1) Average Location Error
(ALE; Lower Is Better) in Pixels between the Centers of the Predicted and the Ground-Truth Bounding Box and
(2) Correct Detection Rate (CDR; Higher Is Better)

OAB [23] TLD [9] n0-SPOT star-SPOT | mst-SPOT

ALE ' CDR | ALE ' CDR || ALE ' CDR | ALE ' CDR | ALE ' CDR

Air Show | 93 , 086 | 313 , 053 || 88 , 092 | 69 , 092 | 56 , 100
Car Chase | 121.8 | 057 | 112 | 076 | 248 | 078 | 112 | 082 | 7.5 | 091
Parade | 127 | 0.82 | 88 , 071 || 623 | 029 | 194 , 035 | 92 | 0.63
Red Flowers | 79.7 | 0.09 | 333 | 030 || 506 | 038 | 86 | 098 | 9.5 | 0.99
Hunting | 1049 | 025 | 1664 1 0.08 || 1717 1 0.07 | 292 | 0.72 | 194 | 0.87
Sky Diving | 155 1 0.76 | 353 1 0.13 || 514 1 048 | 673 1 098 | 54 1 1.00
Shaking | 61.9 | 047 | 143 1 047 | 583 1 047 | 287 1 038 | 7.7 1 097
Basketball | 24.4 | 0.63 | 156 ' 067 || 633 | 067 | 509 | 0.54 | 9.4 | 1.00
Skating | 1002 | 005 | 903 | 042 || 1222 ! 035 | 989 | 027 | 162 ' 0.85
Avg.rank | 39 ' 36 | 29 ' 33 | 44 | 32 | 26 ' 31 | 12 | 12

To measure the correct detection rate, a detection is considered correct if the overlap between the identified bounding box and the ground truth
bounding box is at least 50 percent The results are averaged over five runs and over all target objects in each video. The best performance on each

video is boldfaced.

studies the use of SPOT for adapting generic object
detectors to detectors for specific objects during tracking.

4.1 Experiment 1: Multiple-Object Tracking
We first evaluate the performance of the SPOT tracker on
videos in which multiple objects need to be tracked.

4.1.1  Setup

We used nine videos with multiple objects in this set of
experiments. Three of these videos (Shaking, Basketball,
and Skating) were already used in earlier studies [73];
the other six were downloaded from YouTube. The vid-
eos were selected based on characteristics that are chal-
lenging for current model-free trackers, such as the
presence of multiple, nearby objects with a very similar
appearance. The average length of the videos is 842
frames. The left column of Fig. 2 shows the first frame of
each of the nine videos along with the corresponding
ground-truth annotations of the objects, i.e., the left col-
umn of Fig. 2 shows all labeled training data that is
available to train our tracker. The videos are available
from http:/ /visionlab.tudelft.nl/spot.

We experiment with three variants of the SPOT tracker:
(1) a baseline tracker that does not use structural

180

M mst-SPOT
160 Il star-SPOT|
120/l no-SPOT
7LD
loAB

Fig. 3. Average location error of five multiple-object trackers on all nine
videos (lower is better). Figure best viewed in color.

constraints (i.e., a SPOT tracker with A=0; no-SPOT), (2)
a SPOT tracker that uses a star tree to model spatial rela-
tions between objects (star-SPOT), and (3) a SPOT tracker
that uses a minimum spanning tree to model structural
constraints (mst-SPOT). We compare the performance of
our SPOT trackers with that of two state-of-the-art (sin-
gle-object) trackers, viz. the OAB tracker [23] and the
TLD tracker [9], of which we run multiple instances to
separately track each object. The OAB and TLD trackers
were run using the implementations provided by their
developers.

Following [8], we evaluate the performance of the
trackers by measuringlz (1) average location error (ALE):
the average distance of the center of the identified
bounding box to the center of the ground-truth bounding
box and (2) correct detection rate (CDR): the percentage of
frames for which the overlap between the identified
bounding box and the ground truth bounding box is at
least 50 percent. For each video, these two measurements
are averaged over all target objects, and over five sepa-
rate runs. In all experiments with star-SPOT and mst-
SPOT, we fixed A = 0.001 and K=1. In preliminary
experiments, we found that the results are very robust
under changes of A and K.

4.1.2 Results

The performance of the five trackers (OAB, TLD, no-
SPOT, star-SPOT, and mst-SPOT) on all nine videos is
presented in Table 1 and Fig. 3. Fig. 2 shows five frames
of all videos with the tracks obtained by mst-SPOT. Vid-
eos showing the complete tracks are provided in the
supplemental material, available online. Videos showing
all tracking results are available on http://visionlab.
tudelft.nl/spot. We first qualitatively describe the results
on four of the videos.

Air Show. The video contains a formation of four
visually similar planes that fly very close to each other;
the video contains a lot of camera shakes. Whereas our
baseline trackers (OAB, TLD, and no-SPOT) confuse the

1. Unlike [9], we do not compute the recall (or F-measure) of the
trackers: the recall of a tracker is only informative when in the target
object is occluded or has disappeared in a substantial portion of the
video. In the videos we considered in our experiments, there are no
such occlusions or disappearances of the target object.
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planes several times during the course of the video,
star-SPOT and mst-SPOT track the correct plane
throughout the entire video.

Car chase. This video is challenging because (1) the two
cars are very small and (2) both cars are occluded for
around 40 frames, while various other cars are still visible.
Whereas this occlusion confuses the baseline trackers, the
two SPOT trackers do not lose track because they can use
the location of one car to estimate the location of the other.

Red flowers. The video shows several similar flowers
that are moving and changing appearance due to the
wind, and that sometimes (partially) occlude each other;
we track four of these flowers. The baseline trackers lose
track very quickly due these partial occlusions. By con-
trast, the two SPOT trackers flawlessly track all flowers
during the entire length of the video (2,249 frames),
because they can use the structural constraints to distin-
guish the different flowers.

Hunting. The cheetah and gazelle in this video clip are
very hard to track, because their appearance changes sig-
nificantly over time and because their relative location is
changing (the cheetah passes the gazelle). Nevertheless,
the SPOT trackers can exploit the fact that both animals
move in a similar direction, which prevents them from
losing track.

Taken together, the results presented in Table 1 and
Fig. 2 show (1) that our baseline no-SPOT tracker per-
forms on par with state-of-the-art trackers such as TLD;
and (2) that the use of spatial constraints between
objects leads to substantial performance improvements
when tracking multiple objects, in particular, when min-
imum spanning trees are used (mst-SPOT). The perfor-
mance improvements are particularly impressive for
videos in which objects with a similar appearance are
tracked, such as the Car Chase and Red Flowers videos,
because the structural constraints prevent the tracker
from switching between objects. Structural constraints
are also very helpful in videos with a lot of camera
shake (such as the Air Show video), because camera
shake causes all objects to move in the same direction
in the image. The SPOT tracker even outperforms sin-
gle-object trackers when perceptually different objects
are tracked that have a relatively weak relation in terms
of their location, such as in the Hunting video, because
it can share information between objects to deal with,
e.g., motion blur and camera shake. The mst-SPOT
tracker outperforms the star-SPOT tracker in almost all
videos, presumably, because a minimum spanning
tree introduces direct (rather than indirect) constraints
between the locations of the objects.

We also performed experiments with multi-scale ver-
sions of our SPOT tracker. The multiple-scale trackers
are run at three scales for each frame (viz. relative
scales 0.9, 1.0, and 1.1), and select the highest posterior
probability among the three scales to determine the
location and scale of the object. In all experiments, we
assume that the aspect ratio of the rectangular bounding
box is fixed. Table 2 presents the performance obtained
by three multi-scale, multi-object trackers on the same
nine movies. In particular, we use the (multi-scale) CXT
tracker [46], a multi-scale version of the TLD tracker [9],

TABLE 2
Performance of Four Multi-Scale Model-Free Trackers
on Multiple-Object Videos Measured in Terms
of the Average Location Error (ALE; Lower Is Better)
in Pixels between Centers of the Predicted
and the Ground-Truth Bounding Box

CXT [46] | TLD [9] | no-SPOT | mst-SPOT
ALE ALE ALE ALE
Air Show 6.5 21.3 11.6 7.6
Car Chase 66.1 22.4 69.2 4.1
Parade 8.0 8.8 19.8 15.7
Red Flowers 59.7 40.2 72.6 13.7
Hunting 20.5 133.5 125.9 17.6
Sky Diving 6.4 5.8 19.5 9.8
Shaking 107.5 14.3 30.9 9.9
Basketball 54.1 15.6 34.5 94
Skating 130.7 90.3 88.4 27.3
Avg. rank 2.7 24 33 1.6

The results are averaged over five runs and over all target objects in
each video The best performance on each video is boldfaced.

and a multi-scale version of the no-SPOT tracker as a
baseline.” We compare the performance of these baseline
trackers with that of our multi-scale mst-SPOT tracker.
(Following [8], we only measure tracking errors in terms
of the average location error in these experiments. Mea-
suring the correct detection rate is problematic because
the ground truth bounding boxes are all in single scale.)
The results presented in Table 2 are in line with those
presented in Table 1: the mst-SPOT tracker substantially
outperforms trackers without structural constraints on
most (but not all) of the videos. On videos such as the
Parade and Sky Diving, the CXT and TLD trackers
appear to outperform mst-SPOT despite their lack of
structural constraints. We surmise this has to do with
the size of the objects: the fixed-size of HOG cells (of
8 x 8 pixels) that SPOT uses in its appearance model
may be too large for the small target objects in these
two videos. Indeed, the Haar-representations that the
CXT and TLD tracker employ may be more suited for
tracking such small objects. Comparing the results in
Table 1 and 2, it can be seen that the difference in per-
formance between single-scale and multi-scale SPOT
trackers is rather small, presumably, because most vid-
eos exhibit relatively little scale changes over time.

4.2 Experiment 2: Single Object Tracking

With some minor modifications, our SPOT tracker may
also be used to improve the tracking of single objects. As
the appearance of an object may frequently change due to
partially occlusions, a holistic appearance model may eas-
ily loose track. The appearance of (some of the) smaller
parts of the object is not altered by partial occlusions;
therefore, separately tracking parts may help to locate the
object of interest. SPOT can be used to track the parts of a
single object (treating them as individual objects in V)
with structural constraints between the parts. Inspired by
[6], we experiment with a SPOT tracker that has a single
“global” object detector and a number of “local” part
detectors. We experiment with a star-shaped model in

2. In the experiments with multi-scale trackers, we did not consider
the OAB tracker because it cannot straightforwardly be adapted from
single-scale to multi-scale mode.
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TABLE 3
Performance of Six Model-Free Trackers on Single-Object Videos Measured in Terms of (1) Average Location
Error (ALE; lower Is better) in Pixels between the Centers of the Predicted and the Ground-Truth Bounding
Box and (2) Correct Detection Rate (CDR; higher Is Better)

OAB [23] MIL [8] TLD [9] n0-SPOT star-SPOT | mst-SPOT
ALE ' CDR | ALE | CDR | ALE | CDR || ALE | CDR | ALE | CDR | ALE ' CDR

Sylvester | 20.1 , 042 | 10.9 , 0.73 | 200 , 091 |[ 96 , 088 | 93 , 090 | 7.1 , 0.93
David | 450 | 034 | 229 |, 061 | 45 | 1.00 || 43 | 1.00 | 45 | 1.00 | 3.5 |, 1.00
Cola Can | 112 | 037 | 209 | 022 | 163 | 052 || 285 | 027 | 214 ( 037 | 7.1 | 075
Occl. Face 1 | 179 1 092 | 272 1 078 | 168 1 099 || 57 1 1.00 | 55 | 1.00 | 4.6 | 1.00
Occl. Face 2 | 225 | 085 | 202 | 082 | 221 1 077 || 97 ' 099 | 12.1 | 085 | 7.4 | 100
Surfer | 237 ' 061 | 92 ' 076 7.9 ' 0.84 98 ' 046 | 892 ' 026 | 134 ' 043
Tiger 1 | 43.1 : 025 | 153 : 0.58 | 287 : 013 || 7.8 : 0.90 | 22.1 : 037 | 6.1 : 0.89
Tiger 2 | 21.6 | 044 | 17.1 064 | 37.5 | 027 || 259 | 042 | 265 039 | 7.6 | 0.88
Dollar | 247 | 079 | 148 |, 095 | 3.9 , 1.00 38 , 1.00 | 45 , 100 | 55 , 1.00
Cliff Bar | 332 | 067 | 11.6 | 0.77 | 123 |, 036 || 363 | 042 | 67.6 | 035 | 12.1 | 0.79
Tea Box | 8.6 | 0.94 | 102 | 0.86 | 39.0 | 0.18 || 158 | 0.74 | 28.6 | 043 | 419 | 0.40
Girl | 135 1 097 | 320 1 057 | 247 1 078 || 147 1 097 | 105 | 1.00 | 104 | 1.00
Motocross | 273 | 033 | 81.9 | 005 | 7.5 | 057 || 586 ! 007 | 403 | 0.14 | 348 | 022
Avg.rank | 41 | 38 | 39 | 42 | 38 | 36 33 " 30 | 36 ' 32 | 21 ' 19

To measure the correct detection rate, a detection is counted as correct if the overlap between the identified bounding} box and the ground truth

bounding box is at least 50 percent The results are averaged over five runs.

which the global detector forms the root of the star (star-
SPOT), and with a model that constructs a minimum
spanning tree over the global object and the local part
detectors (mst-SPOT). In single-object tracking, the alter-
ation we made earlier to the search direction of the
learner has become unneeded: because all part detectors
involve the same object, it is actually important to incor-
porate the structural constraints when identifying a
“negative” configuration. Therefore, we used SPOT track-
ers that learn using the true gradient of the structured
SVM loss in our single-object tracking experiments, i.e.,
we set p = Vg{(0;1,0).

4.2.1 Setup

Because a single bounding box is used to annotate the
object in the first frame of the video, we need to deter-
mine what parts the tracker will use. As a latent SVM
[6] is unlikely to work well on a single training example,
we use a heuristic approach that assumes that relevant
parts correspond to discriminative regions inside the
object bounding box. We initialize part ¢ at the location
in which the weights of the initial global SVM w are
large and positive, because these correspond to features
that are highly indicative of object presence. In particu-
lar, we initialize B; as:

B; = argmax
BiCB

(maX(O,wm;y;))Q, (14)

) /
(2}.9;)€B;

where B denotes the bounding box of the (single global)
object. We fix the number of parts |V|—1 in advance, setting
it to 2; we fix the width and height of the part bounding
boxes to 40 percent of the width and height of the bounding
box indicating the deformable object; and we ensure that
the selected part cannot have more than 50 percent overlap
with the other parts in the first frame. Unlike [6], we extract
the features for the part detectors on the same scale as the
features for the global detector. In preliminary experiments,
we also tried using finer-scale HOG features to describe the
parts, but we did not find this to lead to performance
improvements. Using the same features for all detectors has

The best performance on each video is boldfaced.

computational advantages because the features only need
to be computed once, which is why we opt for it here.

The experiments are performed on a publicly available
collection of 13 videos. The first 12 videos of them are
from [8], and the last one is from [9]. The videos contain a
wide range of objects that are subject to sudden move-
ments and (out-of-plane) rotations, and have cluttered,
dynamic backgrounds. The videos have an average length
of 718 frames. Each video contains a single object to be
tracked, which is indicated by a bounding box in the first
frame of the video. (First-frame annotations for all movies
are shown in [8].)

Again, we evaluate the performance of the trackers by
measuring the average location error and the correct detec-
tion rate of the tracker, and averaging over five runs. We
compare the performance of our tracker with that of three
state-of-the-art trackers, viz., the OAB tracker [23], the
MILBoost tracker [8], and the TLD tracker [9]. (All trackers
were run on a single scale.) We could not run the imple-
mentation of the MILBoost tracker ourselves as it is out-
dated (the MILBoost tracker was not considered in
Experiment 1 for this reason), but because we use exactly
the same experimental setup as [8], we adopt the results
presented in [8] here.

4.2.2 Results

Table 3 and Fig. 5 present the performance of all six track-
ers on all 13 videos. Fig. 4 illustrates the tracks obtained
with the MIL, TLD, and mst-SPOT trackers on seven of
the 13 videos. The results reveal the potential benefit of
using additional part detectors when tracking a single
object: mst-SPOT is the best-performing tracker on eight
of the 13 videos in terms of average location error, and on
nine of the 13 videos in terms of correct detection rate.
The performance improvements are particularly impres-
sive in challenging movies such as the Tiger videos, in
which parts of the object are frequently occluded by
leaves. In such situations, the SPOT trackers benefit from
the presence of part detectors that can accurately detect
the non-occluded part(s) of the object. The results also
show that mst-SPOT generally outperforms star-SPOT,
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Fig. 4. Tracking results on seven of the 13 videos (David Indoor, Dollar, Girl, Tiger 2, Coke Can, Occl. Face 2, and Occl. Face) obtained by the MIL,

OAB, TLD, and mst-SPOT trackers. Figure best viewed in color.

which is interesting because it suggests that for object
detection in still images, pictorial-structure models with a
minimum spanning tree [59] may be better than those
with a star tree [6]. Whilst mst-SPOT outperforms the
other tracker on most videos, its performance on the
Motocross and Tea Box videos is poor. For the Motocross
video, we surmise that this is because our HOG descrip-
tors are not appropriate for the small target region being
tracked in that video. The results on the Tea Box video
suggest that single-object SPOT—like most other model-
free trackers—may be hampered by out-of-plane rotations
of the target object.

4.3 Experiment 3: Tracking and Identification
In the third and last experiment, we explore the merits of
the SPOT tracker in the context of model-based trackers that

follow the tracking-by-detection paradigm. In particular,
we explore the ability of SPOT to improve the performance
of object detectors that are trained to recognize generic
objects classes such as faces, pedestrians, or cars. After an
initial detection is made using the Felzenszwalb object
detector [6], we may use single-object SPOT to track the
detected object over time. In our experiments, the SPOT
tracker is initialized using the parameters of the off-the-
shelf detector; after the initial detection, the parameters of
the tracker are then adapted to recognize the particular
object under consideration.

4.3.1 Setup

We perform experiments on three videos for pedestrian
detection from ETH data set [74], called Sunny day, Jelmoli,
and Bahnhof. The Sunny day movie has a length of 354
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Fig. 5. Average location error of six single-object trackers on all 13 vid-
eos (lower is better). Figure best viewed in color.

frames and contains a total of 29 persons, the Jelmoli movie
has 450 frames and about 40 persons, and the Bahnhof movie
has 1,000 frames and about 70 persons. To avoid tracking
false positive detections, we only select those detections
which have high response at the same location longer than
three frames.

We compare our tracker with that of three state-of-
the-art pedestrian detectors that are used in a tracking-
by-detection scenario: (1) a Dalal-Triggs detector (HOG)
that was obtained by training a linear SVM on HOG fea-
tures [11], (2) a Felzenszwalb detector (LatSVM) that
was obtained by training a latent SVM on HOG features
at two scales [6], and (3) the “fastest pedestrian detector
in the wild” (FPDW) that was obtained by Dolldr [75].
All three detectors were trained on the pedestrian class
of the Pascal VOC 2007 challenge. We ran the three
detectors using their default parameter values. Follow-
ing [76], we evaluate the performance of all pedestrian
detectors by evaluating the miss rate as a function of
the false positive rate.

4.3.2 Results

Fig. 6 shows the miss rate as a function of the false posi-
tive rate of all four detectors on all three videos (lower
curves indicate better performance). The results show
that SPOT consistently outperforms the baseline LatSVM

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.36, NO.4, APRIL2014

detector, which is identical to SPOT without the online-
learning component. This shows that tailoring the
appearance model of an object detector to a particular
object of interest may indeed improve performance. Both
LatSVM and SPOT substantially outperform the Dalal-
Triggs detector (HOG), which highlights the merits of
using part detectors in addition to a global object detec-
tor. SPOT is also very competitive compared to FPDW,
in particular, in scenarios in which low false positive
rates are required.

Fig. 7 shows some of the tracking results of mst-SPOT for
on the Sunny day, Jelmoli, and Bahnhof videos. The results
highlight the strong performance of mst-SPOT for pedes-
trian detection. In particular, mst-SPOT appears to perform
well when multiple pedestrians partially occlude each other
thanks to the use of part detectors.

5 CONCLUSION AND FUTURE WORK

In this paper, we have developed a new model-free
tracker that tracks multiple objects by combining multi-
ple single-object trackers via constraints on the spatial
structure of the objects. Our experimental results show
that the resulting SPOT tracker substantially outperforms
traditional trackers in settings in which multiple objects
need to be tracked. We have also showed that the SPOT
tracker can improve the tracking of single objects by
including additional detectors for object parts. Moreover,
the SPOT tracker can be used to adapt a generic detector
to a specific object while tracking. The computational
costs of our tracker only grow linearly in the number of
objects (or object parts) that is being tracked, which facil-
itates real-time tracking. Of course, the ideas presented
in this paper may readily be implemented in other
model-free trackers that are based on tracking-by-detec-
tion, such as the TLD tracker [9]. It is likely that includ-
ing structural constraints in those trackers will lead to
improved tracking performance, too.

In future work, we aim to explore the use of different
structural constraints between the tracked objects; for
instance, for tracking certain deformable objects it may be
better to use a structural model based on PCA (as is done
in, e.g., constrained local models [27]). We also plan to
develop approaches that identify the relevant parts of a
deformable object in a more principled way during track-
ing via online learning algorithms for latent SVMs.
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Fig. 6. Miss rate and false positive rate of HOG, LatSVM, FPDW, and mst-SPOT tracker in pedestrian detection on three movies from the ETH data

set (lower curves indicate better performance). Figure best viewed in color.
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Fig. 7. Pedestrian detections obtained using mst-SPOT on the Sunny day (top), Jelmoli (middle), and Bahnhof (bottom) videos from the ETH data

set. Figure best viewed in color.
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