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ABSTRACT

This paper considers the problem of learning an embedding of
data based on similarity triplets of the form “A is more similar
to B than to C”. This learning setting is of relevance to sce-
narios in which we wish to model human judgements on the
similarity of objects. We argue that in order to obtain a truth-
ful embedding of the underlying data, it is insufficient for the
embedding to satisfy the constraints encoded by the similar-
ity triplets. In particular, we introduce a new technique called
t-Distributed Stochastic Triplet Embedding (t-STE) that col-
lapses similar points and repels dissimilar points in the em-
bedding — even when all triplet constraints are satisfied. Our
experimental evaluation on three data sets shows that as a re-
sult, t-STE is much better than existing techniques at reveal-
ing the underlying data structure.

Index Terms— Partial order embedding, similarity triplets.

1. INTRODUCTION

The analysis of human similarity judgements is important in a
range of fields, such as cognitive science, linguistics, and mar-
ket research. Due to the recent advent of crowd sourcing, hu-
man similarity judgements analysis has recently also received
significant attention in machine learning [1, 2, 3, 4, 5, 6].
In particular, a number of machine-learning techniques have
been developed that facilitate the visual exploration of simi-
larity judgements via embeddings.

Traditional multidimensional scaling methods [7] are of-
ten not equipped to construct embeddings based on human
similarity judgements, as these methods require annotators to
assign a continuous annotation to each pairwise similarity (for
instance, a number on a Likert-scale from 0 to 1). This has
the disadvantages (1) that different annotators use different
“internal scales” and (2) that annotators may be inconsistent
in their grading. Alternatively, non-metric multidimensional
scaling methods may be employed, but these have the disad-
vantage that they require a full ranking of the objects in terms
of their pairwise similarity; providing such rankings is time-
consuming and error-prone. By contrast, it is much easier to

gather partial similarity rankings by asking: “Is A more simi-
lar to B or to C?”. Indeed, human judgements based on such
similarity triplets are generally much more reliable [8].

In this paper we focus on learning a “truthful” embed-
ding, i.e., an embedding in which similar inputs are close to-
gether and dissimilar inputs are far apart, entirely based on
the similarity-triplets supervision. We show that it is insuffi-
cient to simply aim to satisfy the triplet constraints in the em-
bedding through pairwise distances. In particular, we present
experimental results which show that it is possible to con-
struct qualitatively very different embeddings whilst satisfy-
ing the same percentage of the similarity triplets. We propose
a novel technique for constructing embeddings based on sim-
ilarity triplets, called t-Distributed Stochastic Triplet Embed-
ding (t-STE). The main novelty of t-STE is that it collapses
similar points and repels dissimilar points in the embedding
whenever this does not result in additional constraint viola-
tions. Our experimental evaluations reveal that as a result, t-
STE is much better than existing techniques at uncovering the
underlying structure of the data (even though it does correctly
model the same percentage of triplets as existing techniques).

2. PROBLEM FORMULATION

We assume we are provided with a set of inputs {z1, . . . zN}⊂
Z , for which we have no representation suitable for learning,
visualization, and comparison. There exists some (ground-
truth) dissimilarity function s(zi, zj) which quantifies the
dissimilarity of any two inputs zi, zj . This function s(), how-
ever, is hidden to us. Instead, we are provided with a set of
(noisy) triplets of indices:

T = {(i, j, `)| zi is more similar to zj than z`} . (1)

We assume that triplets (i, j, `) ∈ T correspond to s() with
some reasonable high probability, i.e., (i, j, `) ∈ T often
implies that s(zi, zj) < s(zi, z`). Similar to domain adap-
tion [9], we ultimately do not evaluate the embedding on
how well it captured the training signal, i.e., the triplets in
T , but instead on how-well it represents the (during training
unknown) “ground-truth” s().
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An intuitive example where such data might arise is mu-
sic similarity [10], where zi corresponds to the ith artist in
a collection of N artists. The triplets represent subjective
user judgements about whether artist zj is more like artist
zi than like z`. The function s(zi, zj) could be a function
that indicates whether artists zi and zj are in the same sub-
genre. Although one can expect that most users would group
artists within the same sub-genre together, which leads to
triplets that agree with the ground-truth s(), one can also ex-
pect a significant portion of triplets to contradict the genre-
based ground-truth s(). Imagine for example that two artists
are from different genres (e.g., pop and hip hop), and there-
fore their s-distance is large, but some users group them to-
gether because they both passed away (e.g., Michael Jackson
and 2Pac). Other examples could be images of objects [1]
or texture patterns [5]. Our goal is to find an embedding
{x1, . . . ,xN} ∈ Rr, for some r � N , such that triplet com-
parisons based on Euclidean distances agree with those based
on s(). More formally, we aim that for any (i, j, `) ∈ T the
following relation holds with high probability:

‖xi,xj‖2 < ‖xi,x`‖2 ⇐⇒ s(zi, zj) < s(zi, z`). (2)

For notational simplicity, we define the r×N design ma-
trix X = [x1, . . . ,xN ] and the kernel matrix K = X>X.
Throughout this paper we use bold font to denote vectors (xi),
bold capital letters to denote matrices (K) and italic font for
scalars (`). The i, j-entry of matrix K is expressed as kij .

3. EXISTING TECHNIQUES

In this section, we briefly review two recent techniques that
were designed to learn data embeddings based on similarity
triplets: (1) generalized non-metric multidimensional scaling
and (2) crowd kernel learning.

Generalized Non-Metric Multidimensional Scaling.
GNMDS aims to find a low-rank kernel matrix K in such a
way that the pairwise distances between the embedding of the
objects xi in the RKHS satisfy the triplet constraints in the set
T with a large margin [1]. GNMDS minimizes the trace-norm
of the kernel K=X>X in order to approximately minimize
its rank, which leads to a convex minimization problem. After
introducing a slack variable for each constraint, the problem
takes the form:

min
K

trace(K) + C
∑

∀(i,j,`)∈T

ξij` subject to:

(1) kjj − 2kij − k`` + 2ki` ≤ 1 + ξij`

(2) ξij` ≥ 0

(3) K � 0.

Here, C is a constant that weighs the two competing parts in
the objective: the trace regularization (functioning as an ap-
proximation of a rank constraint rank(K)≤r) and the impor-
tance of the triplet constraints. The optimization is performed

by a type of projected gradient descent, i.e., by iteratively tak-
ing a subgradient step and projecting the resulting kernel K
back onto the positive semidefinite cone. The embedding X
is then obtained via an SVD of K.

Crowd Kernel Learning. CKL [5] defines probabilities
that measure how well a triplet (i, j, `) ∈ T is modeled:

pij` =
kii + kjj − 2kij + µ

(kii + kjj − 2kij) + (kii + k`` − 2ki`) + 2µ
,

where µ is a small scalar value that regularizes the final so-
lutions and prevents numerical problems. Hence, a higher
probability pij` indicates that a triplet is less well modeled.
CKL learns the kernel by minimizing the empirical log-loss:

min
K

∑
∀(i,j,`)∈T

log (pij`) subject to:

(1) ∀i : kii = 1

(2) K � 0.

The scale constraint is necessary because the objective is in-
herently scale-invariant. As in GNMDS, learning in CKL is
performed using projected gradient descent and the embed-
ding X is obtained via an SVD of the kernel K. Although the
above optimization problem is non-convex, the probabilistic
interpretation of CKL has the advantage that it facilitates nat-
ural ways for it to be used in active learning setting.

Constraint gradients. Figure 1 shows the gradient that a
triplet (i, j, `) ∈ T induces on the location of the points xj
(top row) and x` (bottom row) as a function of d(xi,xj) =
‖xi − xj‖ and d(xi,x`) = ‖xi − x`‖ for various algorithms.
(STE and t-STE are introduced in the following section.) Red
colors (positive values) indicate that a point is moving in the
direction of xi, whereas blue colors (negative values) indi-
cate that a point is moving away from xi. The top-left region
of each plot indicates the gradients when a constraint (i, j, `)
is satisfied, d(xi,xj)� d(xi,x`). Bottom-right regions in-
dicate the gradients when a constraint is strongly violated,
d(xi,xj)�d(xi,x`). The diagonal (bottom-left to top-right)
represents the cases where the triplet relations become equal-
ities, d(xi,xj)≈d(xi,x`).

The figure shows that, for a constraint (i, j, `) ∈ T , in the
case of GNMDS the gradients w.r.t. a point xj or x` depend
linearly on the distance of that point to xi. These gradients
suddenly drop to zero when a constraint is satisfied (with a
margin of 1). This ignorance of already satisfied constraints
of GNMDS is suboptimal, as it neglects the information rep-
resented by satisfied constraints in determining the underlying
structure of the data. The CKL gradients depicted in Figure 1
reveal that CKL has a similar problem (although the decay of
the gradients is more gradual than in GNMDS). In addition,
CKL appears to be suffering from the problem that the gra-
dient is only large whenever a constraint is strongly violated.
This implies that CKL is mainly concerned with correcting
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Fig. 1. Partial gradients induced by a triplet constraint for all four techniques. Figures best viewed in color.

large constraint violations in the embedding. This is subopti-
mal as these large constraint violations are likely to be the re-
sult of triplets that contradict the “consensus” s() in the data,
e.g., because they were provided by an individual with un-
common preferences. It should be noted here that when the
embedding is initialized by sampling from a Gaussian with
small variance, the only way a strong triplet violation may
occur is if the triplet contradicts several other constraints.

4. STOCHASTIC TRIPLET EMBEDDING

To deal with the problem of CKL that it is mainly concerned
with correcting constraint violations that are due to triplets
that contradict the consensus, we propose a new formulation
for triplet embedding that is much more local. In particular,
our formulation (1) assigns a nearly constant penalty to large
triplet violations and (2) provides a nearly constant reward for
triplets that are satisfied with a large margin. Our formulation
is inspired by stochastic neighbor approaches that have been
successfully used in multidimensional scaling [11] and metric
learning [12]. In particular, we define probabilities as follows:

pij` =
exp(−‖xi − xj‖2)

exp(−‖xi − xj‖2) + exp(−‖xi − x`‖2)
.

The probabilities pij` measure the probability that the triplet
(i, j, `) is satisfied under a stochastic selection rule. Next,
we aim to maximize the sum of the log-probabilities over all
triplets in the training data:

max
X

∑
∀(i,j,`)∈T

log pij`.

A similar objective was also suggested in [5]. We refer to the
resulting technique as Stochastic Triplet Embedding (STE).

In the formulation introduced above, the sum of triplet
probabilities is maximized w.r.t. the embedding points xi. As
an alternative, one can also maximize the objective w.r.t. the
kernel matrix K (subject to K � 0). This leads to a convex
optimization problem that can be solved via projected gradi-
ent descent. We performed experiments with such a convex
variant of STE as well, using a trace-norm regularizer to min-
imize the rank of the kernel matrix (we obtain the final em-
bedding via SVD).

An important difference between STE and CKL is that in
STE the value of the corresponding probability rapidly be-
comes infinitesimal when a triplet constraint is violated. As
a result, stronger violations of a constraint do not lead to sig-
nificantly larger penalties, which reduces the tendency to cor-
rect triplet constraints that violate the consensus. This is il-
lustrated by the STE gradient depicted in Figure 1: the STE
gradient is nearly zero when a constraint is strongly violated
or satisfied. However, it appears that the gradient decays too
rapidly, making it hard for STE to fix errors made early in the
optimization later on.

To address this problem, we propose to use a heavy-tailed
kernel to measure local similarities between data points in-
stead. In particular, we opt to use a Student-t kernel with α
degrees of freedom by defining:

pij` =

(
1 +

‖xi−xj‖2
α

)−α+1
2

(
1 +

‖xi−xj‖2
α

)−α+1
2

+
(
1 + ‖xi−x`‖

2

α

)−α+1
2

,

We refer to the resulting technique as t-Distributed STE (t-
STE). The formulation of the triplet probabilities is motivated
by the success of unsupervised dimensionality reduction tech-
niques that also employ heavy-tailed similarity kernels [13,



14]. A minor disadvantage of the use of the heavy-tailed ker-
nel is that the t-STE objective is not convex w.r.t. K.

However, using a heavy-tailed kernel does have a major
advantage over, e.g., a Gaussian kernel to compute triplet
probabilities from an embedding: the resulting formulation
tries to do more than simply satisfying the triplet constraints.
In particular, the tails of the Student-t distribution are not flat,
and therefore t-STE decreases the distance between points xi
and xj , even when the triplet constraint (i, j, `) is already sat-
isfied. Similarly, it increases the distance between points xi
and x`, even when the triplet constraint (i, j, `) is satisfied.
Hence, t-STE collapses points whenever there are no triplets
keeping the points apart (i.e., when the two points represent
similar objects) and it separates points whenever there are no
triplets keeping the points together (i.e., when the two points
represent dissimilar objects).

The t-STE gradient depicted in the right column of Fig-
ure 1 shows these effects: (1) the gradient w.r.t. xj is attrac-
tive even when the triplet constraint is already satisfied, caus-
ing similar points to collapse, and (2) the gradient w.r.t. x` is
repulsive when the triplet constraint is already satisfied, caus-
ing dissimilar points to separate. Note that the t-STE gradient
does, in contrast to the CKL gradient, decay to zero when a
triplet constraint is very strongly violated. Consequently, t-
STE gracefully handles the noise in T by not trying to satisfy
constraints that contradict the consensus.

5. EXPERIMENTS

To evaluate the effectiveness of the proposed techniques, we
performed experiments with STE and t-STE to compare their
performance with that of GNMDS and CKL.

5.1. Experimental setup

We performed experiments on the MNIST handwritten dig-
its data set and on a music artist similarity data set [10].
On both data sets, we assess the quality of the embeddings
with two distinct metrics: (1) the percentage of held-out
similarity triplets that is satisfied in the embeddings in 10-
fold cross-validation experiments and (2) the leave-one-out
nearest neighbor errors in the embeddings based on additional
labels. These two metrics measure inherently different things.
The first metric measures how well the embedding captures
the training signal T and generalizes to new inputs from the
triplet distribution. The second metric measures how well the
embedding generalizes to the hidden ground-truth s().

In all experiments, we considered both formulations
of GNMDS, CKL, and STE that optimize w.r.t. K and
non-convex formulations of these techniques that optimize
directly w.r.t. X via (sub)gradient descent. The regular-
ization parameters of the kernel variants of GNMDS and
STE and the value of µ in CKL were determined by cross-
validating over a wide range of parameter settings. Follow-

ing [15], the number of degrees of freedom α of t-STE
was set to r − 1. The learning rates for all techniques
were fixed, and all techniques were run until convergence
or until they hit a threshold of 1, 000 iterations. Code re-
producing the results of our experiments is available on
http://homepage.tudelft.nl/19j49/ste.

MNIST data set. We randomly selected a subset of N =
1, 000 digits from the MNIST data set, and described these
digits using 100, 000 triplets (i, j, `), where i is picked uni-
formly at random, j is uniformly chosen among the 50 nearest
neighbors of i, and ` is uniformly chosen from the set of dig-
its that are further away from i than j (in terms of Euclidean
distance between pixel values). The digit labels were not used
in the generation of the similarity triplets.

Music artist data set. The music artist data was gathered
by [10] via a web-based survey in which 1, 032 users provided
22, 310 triplets on the similarity of 426 music artists. We re-
moved inconsistent triplets from the data using the procedure
proposed by [3], leaving 9, 107 triplets on N = 400 artists.
We also gathered genre labels for all artists using Wikipedia,
distinguishing nine music genres (rock, metal, pop, dance, hip
hop, jazz, country, gospel, and reggae). The genre labels were
used to measure nearest neighbor errors.

5.2. Results

Below, we separately present the results of our experiments
on both data sets. As a global trend across both data sets we
observe that good generalization with respect to triplets does
not translate into good nearest-neighbor classification error.

MNIST data set. The left part of Figure 2 presents
the triplet generalization (measured using 10-fold cross-
validation) and the leave-one-out nearest-neighbor errors
of the four techniques. The results reveal that the differ-
ences between the techniques in terms of generalization to
held-out triplets are relatively small in two dimensions: all
techniques correctly model between 63% and 66% of the
triplets, with t-STE performing slightly better than the other
techniques. GNMDS and STE appear to benefit most from
increasing the dimensionality of the embedding. Even though
all techniques construct two-dimensional embeddings that
generalize equally well when used to predict triplets, the
nearest-neighbor errors in the embeddings are very different.
In particular, the nearest-neighbor error of a two-dimensional
t-STE embedding is 66%, whereas all other techniques pro-
duce errors of more than 80%. This suggests that embeddings
which appropriately model the same amount of triplets may
nonetheless have a very different local structure.

This result is supported by the two-dimensional digit
maps in Figure 3, which are two-dimensional embeddings of
N =5, 000 digits constructed based on 1, 000, 000 similarity
triplets1. All four maps in the figure have roughly the same

1Please note that the maps were constructed in a fully unsupervised man-
ner, i.e., the digit labels were only used to color the points in the embedding.
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Fig. 2. Triplet generalization error of the four embedding techniques on the MNIST data set and the music artists data set (first
and third graph). Leave-one-out nearest neighbor errors in genre label prediction based on embeddings constructed by the four
techniques on the music artists data set (second and fourth graph). Figure best viewed in color.

percentage of violated triplet constraints (viz. around 20%),
but the maps differ dramatically in terms of the structure they
reveal. Indeed, the results nicely illustrate how t-STE differs
from the other techniques in that it collapses similar points
whilst repelling dissimilar points. As a result, t-STE does a
much better job at separating some of the classes from the
rest of the data, which leads to lower nearest-neighbor errors.
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Fig. 3. Embeddings of the MNIST digit data set constructed
by the four techniques. Figure best viewed in color.

Music artists data set. The right part of Figure 2 presents
both quantitative metrics for the music artist data. The results
are similar in that – with the exception of STE – the tech-
niques perform roughly on par in terms of generalizing to un-
seen similarity triplets. The right plot shows the leave-one-out
nearest neighbor errors in predicting the genre of artists based
on embeddings constructed using the four techniques. Again,
the results show that while all techniques perform on par in
terms of generalization to unseen triplets, t-STE achieves a

lower genre prediction error. The performance of t-STE is il-
lustrated by Figure 4, which presents a two-dimensional em-
bedding produced by t-STE on the full music artist data set
(the colors of the dots correspond to the genre labels). The re-
sults shows that even in a two-dimensional embedding, t-STE
is quite well capable of identifying groups of music artists
who are related in terms of their genre.

6. DISCUSSION

The results presented in this paper show that there are large
differences in embeddings created with different formulations
of triplet embedding. We observe that it may be insufficient
to only satisfy the constraints induced by the triplets. In par-
ticular, we observe that embeddings that generalize equally
well to held-out triplets vary widely in terms of their nearest-
neighbor errors based on the ground-truth labels.

Our proposed algorithm, t-STE, finds a triplet embedding
that collapses inputs for which the triplet supervision provides
no evidence that they are dissimilar and separates inputs for
which there is no evidence that they are similar. The posi-
tive effect of these forces is that it allows t-STE to model the
local structure of the data more effectively. Moreover, it al-
lows for triplets that contradict the general consensus to be
“overruled”, which provides t-STE with better generalization
to an unknown ground-truth dissimilarity. This observation
is of interest to other learning problems in which the popular
approaches mainly try to satisfy similarity constraints, such
as non-metric multidimensional scaling and learning-to-rank.

In future work, we will study learning settings in which
similarity triplets are used as side-information [16], e.g., in
metric learning. This learning setting is of interest in situa-
tions in which a large amount of unlabeled data is available,
and partial orderings can be obtained via crowd sourcing.
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Fig. 4. Two-dimensional music artist map constructed by t-STE based on all triplets in the music artists data set. A larger
version of the map is available on http://homepage.tudelft.nl/19j49/ste.
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